Вестник Бурятского государственного университета.
Математика, информатика
РУС  ENG  
Вход

BSU bulletin. Mathematics, Informatics

Библиографическое описание:
Kovyrshina A. I.
To the problem of stable elements in free nilpotent group F3,12 // BSU bulletin. Mathematics, Informatics. - 2016. №1. . - С. 3-8.
Заглавие:
To the problem of stable elements in free nilpotent group F3,12
Финансирование:
Коды:
DOI: 10.18101/2304-5728-2016-1-3-8УДК: 512.54
Аннотация:
It is known that there are nontrivial stable elements in free nilpotent group of rank 3 and stage 12. Herewith, the distinctive feature of all these elements is homogeneity entrance of generatrices in these elements. In the article we considered the characteristic subgroup of this group, which include elements of a special kind. We also studied the problem of existence stable elements with inhomogeneous generatrices entrance in the above mentioned subgroup.
Ключевые слова:
nilpotent groups, automorphisms of groups, fixed points
Список литературы:
1. Bludov V. V. Nepodvizhnye tochki otnositel'no vsekh avtomorfizmov v svobodnykh nil'potentnykh gruppakh [Fixed Points with Respect to All Auto- morphisms in Free Nilpotent Groups]. Tretii Sibirskii kongress po prikladnoi i industrial'noi matematike – Third Siberian Congress on Industrial and Applied Mathematics. Novosibirsk, 1998. Part 5.

2. Kovyrshina A. I. Stabil'nye elementy v svobodnykh nil'potentnykh gruppakh ranga tri [Stable Elements in Free Nilpotent Groups of Rank Three]. Vestnik Omskogo universiteta – Bulletin of Omsk University. 2010. No. 4 (58). Pp. 20–23.

3. Kovyrshina A. I. O stabil'nykh elementakh v svobodnykh nil'potentnykh gruppakh ranga dva [About Stable Elements in Free Nilpotent Groups of Rank Two]. Vestnik Buryatskogo gosudarstvennogo universiteta. Ser. Matematika i informatika – Bulletin of Buryat State University. Ser. Mathematics and Com- puter Science. 2015. No. 9. Pp. 3–6.

4. Kovyrshina A. I. Polnoe opisanie stabil'nykh elementov svobodnoi nil'potentnoi gruppy F2,12 [Full Description of Stable elements in Free Nilpotent Group F2,12]. Vestnik Buryatskogo gosudarstvennogo universiteta. Ser. Matematika i informatika – Bulletin of Buryat State University. Ser. Mathemat- ics and Computer Science. 2015. No. 2. Pp. 7–15.

5. Kovyrshina A. I. Stabil'nye elementy avtomorfizmov svobodnoi nil'potentnoi gruppy. Diss. … kand. fiz.-mat. nauk [Stable Elements of Automorphisms in Free Nilpotent Group. Cand. physical and math. sci. diss.]. Omsk, 2011. 113 p.

6. Burrow M. D. Invariants of Free Lie Rings. Communications on Pure and Applied mathematics. 1958. No. 11. Pp. 419–431.

7. Burrow M. D. The Enumeration of Lie Invariants. Communications on Pure and Applied Mathematics. 1967. No. 20. Pp. 401–411.

8. Formanek E. Fixed points and centers of automorphism groups of free nilpotent groups. Communications in Algebra. 2002. No. 30. Pp. 1033–1038.

9. Magnus V., Karrass, A. Solitar D. Combinatorial Group Theory. New York: InterScience, 1966.

10. Papistas A. A Note on Fixed Points of Certain Relatively Free Nilpotent Groups //Communications In Algebra. 2001. No. 29, Pp. 4693-4699.

11. Wever F. Ueber Invarianten in Lieschen Ringen. Mathematische Anna- len. 1949. No. 120. Pp. 563–580.