Вестник Бурятского государственного университета.
Математика, информатика
РУС  ENG  
Вход

BSU bulletin. Mathematics, Informatics

Библиографическое описание:
Kharinov M. V.
Fundamentals of the model of image quasi-optimal approximations // BSU bulletin. Mathematics, Informatics. - 2016. №1. . - С. 60-72.
Заглавие:
Fundamentals of the model of image quasi-optimal approximations
Финансирование:
Коды:
DOI: 10.18101/2304-5728-2016-1-60-72УДК: 4.932
Аннотация:
In the article the results of researches and publications on the so-called segmentation problem, or automatic detection of objects in the image, were summarized. For the automatic object detection we formulated the problem statement, and proposed a model for segmentation of digital images. The article presented the results of current experiments and discussed the features of high-speed computing in a limited amount of RAM.
Ключевые слова:
segmentation, piecewise constant approximation, total squared error, minimization, reversible computing.
Список литературы:
1. Sleator D. D., Tarjan R. E. Self-Adjusting Binary Search Trees. Journal of the ACM. 1985. V. 32. No. 3. Pp. 652–686.

2. Kharinov M. V. Razrabotka dinamicheskikh struktur dannykh sistemy av- tomatizirovannogo raspoznavaniya izobrazhenii. Avtoref. dis. kand. tekhn. nauk [Development of Dynamic Data Structures of the System for Automated Image Recognition. Author’s abstract of Cand. techn. sci. diss.]. St. Petersburg, 1993. 20 p.

3. Nock R., Nielsen F. Statistical Region Merging. IEEE Trans. Pattern Anal. Mach. Intell. V. 26(11). 2004. Pp. 1452–1458.

4. Kharinov M. V. Zapominanie i adaptivnaya obrabotka informatsii tsifrovykh izobrazhenii [Storing and Adaptive Processing of Digital Images Informa- tion]. St Petersburg: St Petersburg University Publ., 2006. 138 p.

5. Kharinov M. V. Obobshchenie trekh podkhodov k optimal'noi segmen- tatsii tsifrovogo izobrazheniya [Generalization of Three Approaches to the Optimal Segmentation of Digital Images]. Trudy SPIIRAN – SPIIRAS Proceed- ings. 2013. V. 25. No. 2. Pp. 294–316.

6. Mumford I. D., Shah J. Boundary Detection by Minimizing Functionals. Proceedings of IEEE Computer. Vision Pattern. Recognition Conference. San Francisco, 1985. Pp. 22–26.

7. Bar L., Chan T. F., Chung G., Jung M., Vese L. A., Kiryati N., So- chen N. Mumford and Shah Model and Its Applications to Image Segmentation and Image Restoration. Handbook of Mathematical Methods in Imaging. 2015. Pp. 1539–1597.

8. Toffoli T. Reversible computing. Springer Berlin Heidelberg, 1980. Pp. 632-644.

9. Kharinov M. V. Pixel Clustering for Color Image Segmentation. Pro- gramming and Computer Software. 2015. – Vol. 41, –No. 5, – pp. 258–266.

10. Kharinov M .V. Model of the Quasi-Optimal Hierarchical Segmentation of a Color Image. Journal of Optical Technology. 2015. V. 82, Iss. 7. Pp. 425– 429.

11. Kharinov M. V., Khanykov I. G. Kombinirovannyi metod uluchsheniya segmentatsii izobrazheniya [A Combined Method of Improving Image Seg- mentation]. Vestnik Buryatskogo gosudarstvennogo universiteta. Matematika i informatika – Bulletin of Buryat State University. Mathematics and Computer Science. No. 9. 2015. Pp. 118–124.

12. Kharinov M. V., Khanykov I. G. Optimizatsiya kusochno-postoyannogo priblizheniya segmentirovannogo izobrazheniya [Optimization of Piecewise Constant Approximation of Segmented Image]. Trudy SPIIRAN – SPIIRAS Proceedings. 2015. V. 3 (40). Pp. 183–202.

13. Aivazyan S. A., Bukhshtaber V. M., Enyukov I. S., Meshalkin L. D. Prikladnaya statistika: Klassifikatsiya i snizhenie razmernosti [Applied Statis- tics: Classification and Dimension Reduction]. Moscow: Finansy i statistika Publ., 1989. 607 p.

14. Redding N. J., Crisp D. J., Tang D. H., Newsam G. N. An Efficient Algorithm for Mumford–Shah Segmentation and Its Application to SAR Imagery. Proc. Conf. Digital Image Computing Techniques and Applications (DICTA’99). 1999. Pp. 35–41.

15. Ward J. H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963. V. 58. Iss. 301. Pp. 236–244.

16. Dvoenko S. D. Meanless K-Means as K-Meanless Clustering with the Bi-Partial Approach. Pattern Recognition and Information Processing (PRIP’2014). Proc. of the 12th Int. Conf. Minsk, 2014. Pp. 50–54.