Вестник Бурятского государственного университета.
Математика, информатика
РУС  ENG  
Вход

BSU bulletin. Mathematics, Informatics

Библиографическое описание:
Mizhidon A. D.
,
Kharakhinov A. V.
The research of boundary value problem for a Timoshenko beam having elastically attached solid with two degrees of freedom // BSU bulletin. Mathematics, Informatics. - 2016. №1. . - С. 88-101.
Заглавие:
The research of boundary value problem for a Timoshenko beam having elastically attached solid with two degrees of freedom
Финансирование:
Работа выполнена при финансовой поддержке РФФИ, проект № 15-08-00973-а
Коды:
DOI: 10.18101/2304-5728-2016-1-88-101УДК: 519.62, 519
Аннотация:
The article deals with the mechanical system consisting of solid attached to a Timoshenko beam by two springs. The Hamilton’s variational principle was used for derivation of dynamic equations. We discussed the approach to research free vibrations for the mathematical model, obtained as a hybrid system of differential equations.
Ключевые слова:
Hamilton’s variational principle, solid, a Timoshenko beam, mathematical model, hybrid system of differential equations.
Список литературы:
1. Barguev S. G., Mizhidon A. D. Opredelenie sobstvennykh chastot pros- teishei mekhanicheskoi sistemy na uprugom osnovanii [Determination of Natural Frequencies of the Simplest Mechanical System on an Elastic Foundation]. Vestnik Buryatskogo gosudarstvennogo universiteta − Bulletin of Buryat State University. 2009. No. 9. Pp. 58−66.

2. Mizhidon A. D., Barguev S. G., Lebedeva N. V. K issledovaniyu vibro- zashchitnoi sistemy s uprugim osnovaniem [To the Research of Vibration Isolation System on an Elastic Foundation]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie − Modern Technologies. System Analysis. Modeling. 2009. No. 2(22). Pp. 13−203.

3. Mizhidon A. D., Barguev S. G. O sobstvennykh kolebaniyakh mekhani- cheskoi sistemy kaskadnogo tipa, ustanovlennoi na uprugom sterzhne [About Natural Vibrations of the Mechanical Cascade-Type System Mounted on an Elastic Rod]. Vestnik VSGTU – Bulletin of ESSTU. 2010. No. 1. Pp. 26–32.

4. Barguev S. G., Eltoshkina E. V., Mizhidon A. D., Dabaeva M. Zh. (Tsytsyrenova M. Zh.) Issledovanie vozmozhnosti gasheniya n mass, ustanovlen- nykh na uprugom sterzhne [Studies in Possibility of Suppression of n Masses Mounted on an Elastic Rod]. Sovremennye tekhnologii. Sistemnyi analiz. Mod- elirovanie − Modern Technologies. System Analysis. Modeling. 2010. No. 4(28). Pp. 78–84.

5. Mizhidon A. D., Barguev S. G. Kraevaya zadacha dlya odnoi gibridnoi sistemy differentsial'nykh uravnenii [A Boundary Value Problem for the Hybr- id System of Differential Equations]. Vestnik Buryatskogo gosudarstvennogo universiteta – Bulletin of Buryat State University. 2013. No. 9. Pp. 130–137.

6. Mizhidon A. D., Dabaeva M. Zh. (Tsytsyrenova M. Zh.). Obobshchennaya matematicheskaya model' sistemy tverdykh tel, ustanovlennykh na upru- gom sterzhne [Generalized Mathematical Model of the System of Solids Mounted on Elastic Rod]. Vestnik VSGUTU – Bulletin of ESSUTM. 2013. No. 6. Pp. 5–12.

7. Mizhidon A. D., Dabaeva M. Zh. Matematicheskoe modelirovanie, uchet dempfiruyushchikh svoistv uprugikh svyazei v obobshchennoi matematicheskoi modeli sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne [Mathematical Modeling, Сonsideration of Elastic Links Damping Properties in Generalized Mathematical Model of the System of Solids Mounted on Elas- tic Rod]. Vestnik VSGUTU – Bulletin of ESSUTM. 2015. No. 2. Pp. 10−17.

8. Cha F. D. Free Vibrations of a Uniform Beam with Multiple Elastically Mounted Two-Degree-of-Freedom Systems. Journal of Sound and Vibration. 2007. No. 307. Pp. 386–392.

9. Wu J. J., Whittaker A. R. The Natural Frequencies and Mode Shapes of a Uniform Cantilever Beam with Multiple Two-DOF Spring-Mass Systems. Journal of Sound and Vibration. 1999. No. 227. Pp. 361–381.

10. Wu J. S., Chou H. M. A New Approach for Determining the Natural Frequencies and Mode Shape of a Uniform Beam Carrying Any Number of Spring Masses. Journal of Sound and Vibration. 1999. No. 220. Pp. 451–468.

11. Wu J. S. Alternative Approach for Free Vibration of Beams Carrying a Number of Two-Degree-of-Freedom Spring-Mass Systems. Journal of Structural Engineering. 2002. No. 128. Pp. 1604–1616.

12. Naguleswaran S. Transverse Vibration of an Euler-Bernoulli Uniform Beam Carrying Several Particles. Int. J. Mech. Sci. 2002. No. 44. Pp. 2463–2478.

13. Naguleswaran S. Transverse Vibration of an Euler-Bernoulli Uniform Beam on up a Five Resilient Supports Including End. Journal of Sound Vibration. 2003. No. 261. Pp. 372–384.

14. Kukla S., Posiadala B. Free Vibrations of Beams with Elastically Mounted Masses. Journal of Sound and Vibration. 1994. No. 175(4). Pp. 557-564.

15. Su H., Banerjee J. R. Exact Natural Frequencies of Structures Consist- ing of Two Part Beam-Mass Systems. Structural Engineering and Mechanics. 2005. No. 19 (5). Pp. 551–566.

16. Lin H. Y., Tsai Y. C. Free Vibration Analysis of a Uniform Multi-Span Beam Carrying Multiple Spring-Mass Systems. Journal of Sound Vibration. 2007. No. 302. Pp. 442–456.

17. Wu J. S., Chen D. W. Dynamic Analysis of Uniform Cantilever Beam Carrying a Number of Elastically Mounted Point Masses with Dampers. Jour- nal of Sound and Vibration. 2000. No. 229(3). Pp. 549–578.

18. Yesilce Y., Demirdag O., Catal S. Free Vibrations of a Multi-Span Timoshenko Beam Carrying Multiple Spring-Mass Systems. Sadhana. 2008. No. 33(4). Pp. 385–401.

19. Mizhidon A. D., Barguev S. G., Dabaeva M. Zh. (Tsytsyrenova M. Zh.) Sobstvennye kolebaniya dvukhproletnoi balki Timoshenko s prisoedinennym ostsillyatorom [Free Vibrations of Two-Span Timoshenko Beams with Adjoint Oscillator]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie − Modern technologies. System analysis. Modeling. 2013. No. 4 (40). Pp. 34−38.

20. Vibratsii v tekhnike. T. 1. Kolebaniya lineinykh sistem [Vibrations in Technics. V. 1. Vibrations of Linear Systems]. In 6 v. Moscow: Mashinostroenie Publ., 1978. 136 p.

21. Vladimirov V. S. Obobshchennye funktsii v matematicheskoi fizike [Generalized Functions in Mathematical Physics]. Moscow: Nauka Publ., 1976. 280 p.