BSU bulletin
Mathematics, Informatics
LoginРУСENG

BSU bulletin. Mathematics, Informatics

Bibliographic description:
Antipina N. V.
OPTIMAL CONDITIONS OF IMPULSIVE PROCESSES IN APPLICATION TO THE PROBLEMS OF ECONOMIC DYNAMICS // BSU bulletin. Mathematics, Informatics. - 2018. №2. . - С. 13-28.
Title:
OPTIMAL CONDITIONS OF IMPULSIVE PROCESSES IN APPLICATION TO THE PROBLEMS OF ECONOMIC DYNAMICS
Financing:
Codes:
DOI: 10.18101/2304-5728-2018-2-13-28UDK: 517.977
Annotation:
The article presents an applied model of the optimal distribution in time of advertis- ing costs of two goods, which is mathematically formalized as a problem of optimal impulsive control. Bounding on top of investment’s temps in the advertising does not exclude the possibility of aggressive advertising and formally leads to the need to consider the problem in an extended, impulse statement.
A mathematical singularity of this problem is the well-posedness of non- compliance condition of the impulsive control transition (the Frobenius-type well- posedness condition). This fact considerably complicates the investigation of the problem and means the following: each impulsive control corresponds not to one trajectory, but to a set of generalized solutions of the problem’s dynamical system from the class of bounded variation functions. The control in this problem of pulse optimization is not only measures, but also a set of limit controls for each moment of the measure jump. They make it possible to single out an individual generalized trajectory and to construct, if it’s necessary, a conventional suboptimal solution.

In this article we applied the corresponding maximum principle and the quadratic necessary optimality conditions of particular controls for qualitative analysis of the presented model.
Keywords:
impulsive control; discontinuous trajectories; optimality conditions; extremal; advertising investments.
List of references:
Aksenyushkina E. V. Nakhozhdenie optimal'noi investitsionnoi strategii fi- nansovoi organizatsii [Search for Optimal Investment Strategy of Financial Institution]. Baikal Research Journal. 2017. V. 8, No. 4. Pp. 16–30. DOI: 10.17150/2411- 6262.2017.8(4).16.

Baenkhaeva A. V. Issledovanie optimal'nogo impul'snogo upravleniya v modeli reklamnykh raskhodov [The Research of Optimal Impulsive Control in the Model of Advertising Expenditure]. Vestnik Buryatskogo gosudarstvennogo univesiteta — Bulle- tin of Buryat State University. Mathematics, Informatics. 2009. No. 9. Pp. 18–21.

Baenkhaeva A. V., Timofeev S. V. Evolyutsionnyi podkhod k razvitiyu sredstv massovoi informatsii: postroenie matematicheskoi modeli [Evolutionary Approach to Development of Mass Media: Construction of a Mathematical Model]. Izvestiya Bai- kal'skogo gosudarstvennogo universiteta — Bulletin of Baikal State University. 2016. V. 26. No. 5. Pp. 825–833. DOI: 10.17150/2500-2759.2016.26(5).825-833. Pp. 825– 833.

Dykhta V. A. A Variational Maximum Principle and Quadratic Optimal Condi- tions of Pulse and Singular Processes. Sib. mat. zhurn. — Siberian Math. J. 1994. V. 35. No. 1. Pp. 70–82.

Dykhta V. A., Samsonyuk O. N. Optimal'noe impul'snoe uprav-lenie s priloz- heniyami [Optimal Impulsive Control with Applications]. Мoscow: Phizmatlit Publ., 2000. 256 p.

Dyukalov A. N. Nekotorye zadachi prikladnoi matematicheskoi ekonomiki [Some Problems of Applied Mathematical Economics]. Moscow: Nauka Publ., 1983. 119 p. Moscow: Nauka Publ., 1983. 119 s.

Intriligator M. Mathematical Optimization and Economic Theory. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971. 508 p.

Shupletsov A. F., Kharitonova P. V. Modelirovanie optimal'noi strategii raz- vitiya predprinimatel'skoi deyatel'nosti promyshlennoi kompanii na osnove effektiv- nogo ispol'zovaniya potentsiala nematerial'nykh resursov [Modeling of An Optimal Strategy of Company Business Development on the Basis of Efficient Utilization of Non-Tangible Resources]. Izvestiya Irkutskoi gosudarstvennoi ekonomicheskoi akademii — Proceedings of Irkutsk State Economics Academy. 2013. No. 6. Pp. 8–14.

Arrow K. J. Applications of Control Theory to Economic Growth. Print book, 1967.

Dorroh J. R., Ferreira G. A. A Multistate, Multicontrol Problem with Un- bounded Controls. SIAM J. Contr. and Optim. 1994. V. 32. No. 5. Pp. 1322–1331.

Sethi S. P., Thomson G. L. Optimal Control Theory. Applications to Manage- ment Science. USA, Boston, 1981. 370 p.