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In previous works R. Enkhbat showed that the Malfatti's problem can be treated as
the convex maximization problem and provided with an algorithm based on Global
Optimality Conditions of A. S. Strekalovsky. In this article we reformulate Mal-
fatti’s problem as a D.C. programming problem with a nonconvex constraint. The
reduced problem as an optimization problem with D.C. constraints belongs to a
class of global optimization. We apply the local and global optimality conditions by
A. S. Strekalovsky developed for D.C programming. Based on local search methods
for D.C. programming, we have developed an algorithm for numerical solution of
Malfatti's problem. In numerical experiments, initial points of the proposed algo-
rithm are chosen randomly. Global solutions have been found in all cases.
Keywords: D.C. programming; global optimality conditions; Malfatti's problem;
convex maximization; local search algorithm; D.C. constraint, global optimization,
Malfatti circles; linearized problem; D.C. minimization.

Introduction
In 1803, Gian Francesco Malfatti (1737—-1807) of the University Ferrara

posed the problem of determining the three circular columns of marble of pos-
sibly different sizes which, when carved out of a right triangular prism, would
have the largest possible total cross section [16]. This is equivalent to finding
the maximum total area of three circles which can be packed inside a right tri-
angle of any shape without overlapping. Malfatti gave the solution as three cir-
cles (the Malfatti circles) tangent to each other and to two sides of the triangle.

In [14], it was shown that the Malfatti circles were not optimal. The most

common methods used for finding the best solutions to Malfatti's problem were
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algebraic and geometric approaches [1, 13, 11]. In 1994 Zalgaller and Los [27,
15] proved that the greedy arrangement solves the Malfatti's problem. Melissen
conjectured in [17]: the greedy arrangement has the largest total area among of
n (n > 4) non-overlapping circles in a triangle.

In papers [8] and [9], Malfatti’s problem has been examined from a view
point of global optimization theory and algorithm. We deal with Malfatti’s
problem first formulated in [16] reducing it to D.C. programming. In particular,
the problem was treated as a convex maximization problem. An algorithm
based on global optimality conditions given in [23] has been applied to solving
Malfatti’s problem.

1. Preliminaries
We introduce the following sets. A triangle set is given by

D={xeR*|(a',xy<bh, a eR* b cR,i=13},
and denoted by B, circle with a center ¢’ € R*and a radius 7, € R
B,=B(c,r)={xeR||x-c'|<r},i=13.
Theorem 1. [8] B, — D if and only if
(d,cy+r|ld |<b,i=13. (1)
Proof. Necessity. Let y € B(c',r;) and y € D. The point y € B(c',r,) can
h” <1. It follows from the condi-

be casily presented as y=c' +rh, he R",
tion yeD that (d,y)<b,i=13, or, equivalently,
(d,c"y+r{a’ ,hy<b,i=13 YheR®. Hence, we have
(d',c") +n%ﬁ§(ai,h) <b, i=13.
Sufficiency. Let the condition (1) be satisfied, and on the contrary, assume
that there exists ) € B, such that y ¢ D. Clearly, there exists heR" such

that J=c' +rh,

h|<1. Since V¢ D, there exists je{l,2,3} for which
J

(@’,7)>b, or (a’,c' +1hy=(a’ ,c)+1(a’,h)>b,.

2. Malfatti's problem and optimization approach

Denote by ¢' =(¢|,c¢;) — coordinates of the first circle, ¢* =(c,c;) —
coordinates of the second circle and ¢’ =(c;,¢}) — coordinates of the third
circle. 7;,7,,r, — their corresponding radii, and x = (¢',c¢*,¢’, 7,7, 1) .

Notice, that non-overlapping condition of circles, i.e.

int(B,nB)=@ Yi#j, i,j=13
can be formulate using following inequalities:
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r+r) < c’f—cjz,i;t', i j=1.3. Q)
;T J> L]

Then Malfatti's problem can be reformulated as the following optimization
problem:

3
O(x)=r>r T max, A3)
/=1 *
(@, cy+r|a|<b, i,j=13, )
ary <=, iz ij=13, ®)
1,20, jzl,_3. (6)

Condition (4) describe that the circles belong to a triangle set, condition (5)
are for non-overlapping circles, and inequalities (6) are non-negative radii con-
dition.

3. Malfatti's » -circle problem

Let ¢'(c],c)), i=1,n — coordinates of n circle 7, i=1,n — their corre-

sponding radii and x=(c',....,c",r,....r,) e R”".

>

O(x)=n Z r? T max, )

-1
(ai,cj)+i}“ai"£bi, i=13, j=Ln ®)
rry<|e e[, iz ij=Ln, ©)
r, >0, j=Ln. (10)

Now, denote by f,(x) the following function:

S =-0() =737

and by f (x), i =1,n,non-convex constraints:

f(0)=@+r) -

Further, let us put convex constraints (8) in the set S :
S={xeR"|(d,c)+r, "ai“gbl_, r.>0, i,j=1n}.
Then the Malfatti's problem (7)-(10) has the following formulation

fox)=-7>r} I min, xS,
j X

. 12 P
‘c’—c’” <0,i#j, i,j=Ln.

>

(1D
f(x)=(r +1’J.)2—"ci—cj"2 <0,i# j,i,j=Ln.
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It is a general D.C. minimization problem with inequality constraints:
o(x) = go(x) = hy(x) Y min, x € S,
f(x)=g.(x)-h(x)<0,iel={1,..,n},

where

G =0, (W) =1Y 72, &)=+,

; 112
¢ —c’ i#j,iel

b4

hi(x) :‘

and convex set S ={xe R |{da',c’)+ 7;

‘ai"sbi, r, 20, i,j=1n}.
For this type of problem there is a special local search method provided by
A.S. Strekalovsky [24].

4. A special local search method for the general
D.C. minimazion problem

Consider next problem:
(P1) f(0)=g()~h(x)dmin xeD, (12)
or
(P2) { o(x) ¥ mxin, xes, A%
F(x) = g(x)—h(x) <0,

where aset D € R" and the functions g,#:R" — Ru {+oo} a convex.

These D.C. problems were studied and built local search algorithm for their
minima in [24]. Now on the basis of these results, we will consider the general
D.C. optimization problem of the following type:

£, (x) = g,(x)—hy(x) ¥ min, x € S,
(P) o7 (14)
fi(x)=g.(x)=h(x)<0, iel={1,23,..,n}

where functions g, and /,i€l N0, are convex, as well as the set.S  R".

Further, let us suppose that the feasable set D of Problem (P) is non empty:

D={xeS|f(x)<0,icl}#J (15)
and the optimal value of the Problem (7P)is finite:
Y(P):irif{fO(xﬂxeD}>—oo. (16)

Furthermore, assume that a feasible starting point x° € D is given and, in
addition, after several iteration it has been produced a current iterate

eDkeZ = { 0,1,2 }.Then consider the linearized problem as follows:

s Ay 4.t
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@, (x) = g,(x) ~ (hy (x*),x) d min, x € 5,
D, (x)=g,(x)—(h' (x), x—x"—h(x")<0, iel,
where //(x*) is a subgradient of the function /(-) at the
point x*, A/(x") e oh,(x"),iel.

It can be readily seen, that the linearized problem (Pﬁk) Is convex, since its

(PL) { (17)

goal function is convex as well as its feasible set
D, ={xeS|g (x)—{h (x*),x—x"Y—h(x")<0, iel}. (18)
Hence, Problem (PL,) can be solved by suitable convex optimization
methods [5, 6] for any given accuracy.
Therefore, let us compute a new iterate X, ,,as an approximate solution to

the linearized problem (PL,)so that x*™' € D, and satisfies the following ine-

quality:

cDOk(karl):go(xk+l)_<h0'(xk)’xk+l> SY(PQ)+5 ; (19)
where Y(PL,) is the optimal value of the Problem (PL,):

Y, =Y(PL) =inf{®, (x)|xeS, P, (x)<0,ic]} (20)

and given sequence {5 k} satisfies the condition

D6 <+ 1)
k=0

It is easy to see, that D, < D, and therefore x*"!is feasible not only in the
linearized problem (PL, ) , but also in the original problem (P), because due to
convexity of /() one has
0 > gi(karl) _<hi'(xk),xk+l _xk> —hi(xk) — q)ik(karl) >

> gi(karl) _hi(xkﬂ) _ ‘](;(xk+1)'

Hence, the natural idea arises to construct a sequence {xk} ,

x*eD, k=0

of the linearized problem (PL, ). The first properties of such a sequence are

(22)

1,2,..., starting at the point x° and by the consecutive solving

27 : Vol

similar to one of from [24].

Theorem 2. [24] The sequence x* produced by the rule (19) fulfils the fol-
lowing conditions:

@) {xk} cD, x*eD,, k=0,1,2,..;
(i) the number sequences f,, = f,(x*) and A®,, where
AD, =D, (x")— D, (x*") converge, so that
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) lim /3, = £, 2 Y(P)
b) IimA®, =0; (23)

k—0
) lim| Y(PL) - AD,, ()] =0.
Proof. Proof can be performed so as it hes been done in Theorem 1 [24]. It
suffices to replace in the inequality (13)-(15) in [24] the functions f, g, /4 and
® by f,, g, h, and D, respectively.

In the same manner, that it has been proved Lemmal in [24], it is easy to
show that the following result takes place.

Lemma 1. [24] Suppose, that the sequence {xk} and { yk} , where
ye =hi(x*)eon(x"), k=0,1,2,...
produced by the method (19) converge in the following sense
]%im xF=ux,
(H) e (24)
lim yg = y, € Oy (x).
Then the number sequence { Y, = Y(PL,)} converges so that
limY, =Y, (25)

k—o0
as well as the sequence {CDOk (xk“)} :
lim ®,, (=, . (26)

From (23) (c) it follows that Y, = @, what can be expressed otherwise and
more precisely by means of analogy of Theorem? of [24] for problem (P).

Theorem 3. [24] Assume, that in addition to (H) the supplementary as-
sumption holds

(H1) lim yf =y, € Ok (x.), i 1, @7)
where y* =h/(x*)eoh(x"), k=0,1,2,.., iel.Then the cluster point x, of

the sequence {xk} turns out to be a solution to the following linearized prob-

lem:
PL) { D (x)=g,(x)=(¥,,x) ¥ min, x € S, 5
D, (x) = &,(X) = (Yiw, X = %) =1, (x,) <0,
where y,. = h/(x,) € 0h,(x,), i€ I U{0}.
Proof. From (3)—(6), (19), (25) and (26) it follows
q)o(x*):go(x*)_<yoax*>:Y* > (29)
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due to continuity of g,() and the inner product. On the other hand, on account
of the inequalities

Y. <@, (x) =8, (%)= (), %), VXES,
D, (x) = g, (%)~ (yf, x—x") ~h(x"), Viel
(le. VxeD,), k=0,1,2,..., when k£ — oo we obtain following relations:
T, < @, (x) = gy (%)= (¥, %), VX ES,
D.(xX)=g.(x)—y,x—x.)—h(x,),Viel, (30)
VxeD, :{xeS|CDi*(x)£0, iel}

due the continuity of the inner product and the functions /,(-), i€ [l.

The latter system of inequalities (30) along with (29) proves the theorem.

Corollary 1. The cluster point X, € S of the sequence {xk} is a stationary

(critical) point of the problem (7P), so that it fulfils the necessary optimality
conditions

(a) Zn:& [g/(x) = yu]€-N(x.|S9),
i=0 n a0
(b) Zj“icDi* (x*) =0

with some multipliers of Lagrange

2,20,i=0,12,--, A={(4, 4,4, 1)} #0,,,.

27 2

Remark (stopping criteria). As it has been shown in [24], it can be ready
seen, that the inequatliites

LG - )<t s<L, 32)
5 2
or
q)Ok(xk)_CDOk(ka) —
= go(¥*) = g, (NI (), xF — Xy < g 5< % (33)

can be take as the stopping criterion for the method (19).
On the other hand, it is easy to show the result similar to Proposition 1 in
[24] or, what is the same, convergence with respect to the variable x :

lim || * —x [}=0 G34)
k—0
under the assumption that the function 7, (-) is strongly convex, i.e.

2, Vx,yeR,

' H
T ()2 By () + (B (), x =)+ Zre =y
as it was performed in the proof of Proposition 1 in [24].
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5. Test problems
In order to obtain numerical solution of Malfatti's problem we use the spe-
cial local search method provided by A.S. Strekalovsky [24], whose main idea
consisted of a successive solution of partially linearized problems.
Let us introduce the test problem 1. This is origin Malfatti's problem with 3
circle, which we should place in a triangle with given verti-
ces 4(0,0), B(3,4), C(8,6) . Then global optimization formulation is [9]:

max [ =7 (x; +x; +x,), (35)
—4x, +3x, +5x, <0,
6x, —8x, +10x, <0,
—2x,+5x, +/29x, <14,
—4x, +3x, +5x, <0,
6x, —8x, +10x, <0,
—2x, +5x, +/29x, <14,
—4x, +3x, +5x, <0, (36)
6x, —8x, +10x, <0,
—2x, +5x, +~/29x, <14,
(x, =) + (x5 —x,)" = (x; +x,)> >0,
(x, = x)* + (%, —x,)* = (x; +x,)> >0,
(x, —x,)" + (X —x)* —(x, +x,)° >0,
x;20,x,20, x, 20.
where x; =7, X, =1, X, =1;.
Then D.C. formulation will be:
fo(x):—ﬂ(x32+x62+x92)—>mxin, xeSs. (37)
where
—4x, +3x, +5x, <0,6x;, —8x, +10x, <0,
—2x, +5x, +4/29x, <14, — 4x, + 3x, +5x, <0,
S={6x, —8x, +10x, <0, - 2x, +5x, +29x, <14, (38)
—4x, +3x, +5x, <0,6x, —8x; +10x, <0,
—2x, +5x, +~/29x, <14.

Local search for this problem run from 8 following starting points

79



BECTHUK BI'Y. MATEMATHUKA, MTHOOPMATHUKA 2018/4

x, =(2.5,25, 35, 3.5,4.7,4.1,05, 0.6, 0.3);
x;=(1.0, 1.0, 2.0, 2.0, 7.4, 54,02, 0.2, 0.2);
x; =(3.0, 3.0, 40, 4.0, 2.0, 2.0, 0.1, 0.1 0.1);
xg =(2.0, 2.0, 3.5, 3.5, 45,4, 02,04, 0.1);
x;=(3.5,3.5,23,23, 6.0, 4.8, 0.6, 0.4, 0.08);
x;=(1.5,15, 3.5,35,55,45,02, 04, 0.2);
x, =(3.5, 3.0, 4.5, 4.0, 6.0, 5.0, 0.1, 0.3, 0.1);
x;=(24, 24, 35,35,47,4.1,04,06, 0.4).
In following table one can see the results of numerical experiment. Where
x, is the starting point number, f,(x,) is value of cost function in starting

point, f,(z) is value of cost function in critical point z, PL is the number of

solved linearized problem.
Note that the solution of test problem 1 performed by greedy algorithm is
equal 3.194.

X, £, (x,) £, (2) pr | Time (sec.)
1 2.1991 3.1944 4 0.67
2 0.3770 3.1944 6 0.94
3 0.0942 3.1944 4 0.84
4 0.6597 3.1944 5 0.88
5 1.6067 3.1944 5 1.05
6 0.7540 3.1944 5 0.78
7 0.3456 3.1944 4 0.64
8 2.2101 3.1944 4 0.60

Software: Matlab R2011b, Gurobi Optimizer 7.5.1. Computer: CPU Intel
Core 15-5200U CPU 2.20 GHz 2.20 GHz, 6 GB RAM.
The test problem 2 is Malfatti's problem with 4 circle [9], which we should

place in the same triangle with given vertices A(0,0) , B(3,4), C(8,6). For
this problem Local search run from 10 following starting points.

x, =(2.5,25,35,3.5,47,4.1,0.7,0.7, 0.5, 0.6, 0.3, 0.04);

x; =(2.0, 3.0, 3.0, 3.0, 4.0, 40, 5.5, 45, 0.1, 0.4, 0.2, 0.1);
x;=(1.0,1.0,20,20,3.0 30,74, 54,02,02,03,0.2);
x;=(3.5,35,23,23,6.0,48,0.7,0.7, 0.6,0.3, 0.08, 0.04);
x;=(45, 40,19, 19, 25 25,34,3.4,0.5,0.3, 0.5, 0.6);
x;=(1.5, 1.5, 2.0, 2.0, 3.5, 4.0, 55, 7.0, 0.1, 0.1, 0.1, 0.1);

x, =(2.0, 3.0, 3.0, 3.0, 4.0, 4.0, 5.5,4.5,0.1,0.4, 02, 0.1);
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x\=(0.4,04,1.0,1.0, 2.1, 2.1, 3.8, 3.6, 0.02, 0.05, 0.2, 0.5);
x)=(13, 12, 3.5,3.4, 1.7,1.7, 0.3, 0.3, 0.1, 0.6, 0.2, 0.02);
x°=(1.0, 1.0, 3.5, 3.5, 5.0, 6.1, 5.5, 7.0, 0.1,0.3, 0.1, 0.1).

Let consider the computational results of local search for test problem 2. So-
lution performed by greedy algorithm is 3.7103.

Y | A& | K | PL (Tm’)
1 22041 3.6687 5 0.76
2 0.6911 3.7103 5 0.75
3 0.6597 3.6687 6 1.10
4 1.4388 3.6687 5 0.96
5 2.9844 3.6687 3 0.53
6 0.1257 3.6687 5 1.19
7 1.6022 3.6687 4 0.92
8 09161 3.7103 5 0.8

9 0.9201 3.6687 5 0.9

10 0.3770 3.7103 6 1.11

Conclusion

In this paper Malfatti’s problem has been considered which is a nonconvex
optimization problem. This problem was reformulated by us as a D.C. pro-
gramming problem with D.C. constraint. Based on a local search method, an
attempt to find global solutions in this problem has been made. In the proposed
algorithm, initial starting points are chosen arbitrarily.

For comparison purpose, we have considered some test examples given in [8].
The numerical results are provided and in all cases global solutions have been
found in these problems.
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B mpensioymux paborax P. DuxOaT mokasam, 4ro mpobinemy Mandarty MOXHO
paccMaTpuBaTH KAK MPOOIEMY BBIMYKIOW MAKCHMHU3AIUMHA W PEIIATh aArOPUTMOM HA
OCHOBE I100aNbHBIX ycnoBuid ontuManbHOCTH A. C. Ctpekanosckoro. B aroif crathe
MBI iepeyopmyupyeM mpodaemy Mangartu kak npodnemy D.C. mporpaMMupoBaHus
C HEBBITYKIBIM orpanumdcHreM. [IpuBenenHas npodneMa, Kak mpodieMa ONTHMH3ALNH
¢ D.C. orpaHn4eHHsIME, NPHHAMICKHUT KIACCY INI00ANBHON onTuMm3anuu. Mel mpu-
MEHSIEM JIOKAIBHBIE M T100anbHbIe yciaoBus ontuManbHOCTH A. C. CTpekaaoBCKOro,
paspadorannsie misa D.C. mporpamvupoBanus. OCHOBBIBASCH HA METONAX JIOKATEHOTO
noucka a1t D.C. mporpaMMHpOBaHMSA, MBI Pa3padOTaad aNroOpUTM I YHCICHHOTO
pemenust 3anaun Mandarty. B 9uciIeHHBIX 3KCIIEPUMEHTAX WCXOJHBIE TOUKH ITPEUIa-
TacMOro ajrOpUTMa BEIOMPAFOTCSA CIydaHBIM 00pa3oM. Bo Bcex ciaywasx HaWICHBI
r1100aNBHBIE PEICHUS.

Kmiouesvie crnosa: D.C. ontumu3anus; ycuoBus TT00aTbHOW ONTHMAJIBHOCTH, 3a-
mada Mane(aTTy; BBITYKIAas MAKCHMHU3AIWA; aIrOPHTM JIOKanpHOro mowmcka; D.C.
OTPaHHUYCHUE; TI00ATBHAS ONTAMU3AINS, Kpyru Man(aTTu; TMHeapU30BaHHAS 331414,
D.C. MuaEMM#3AIHSA.
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