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Аннотация. В конце прошлого столетия Дж. Б. Майлз доказал, что ес-
ли целая функция бесконечного порядка имеет нули, распределенные на ко-
нечной системе лучей, то её нижний порядок также равен бесконечности.
К. Г. Малютин, М. В. Кабанко и Т. В. Шевцова (2022) распространили ре-
зультат Майлза на истинно аналитические функции бесконечного порядка от-
носительно классической функции роста r на верхней полуплоскости. В дан-
ной работе мы распространяем результат К. Г. Малютина, М. В. Кабанко и
Т. В. Шевцовой на пространство истинно аналитических функций на верхней
полуплоскости бесконечного порядка относительно модельной функции роста
M . Понятие модельной функции роста M , введенное Б. Н. Хабибуллиным,
охватывает широкий класс функций. В частности, функции, определяемые
модельной, могут иметь бесконечный порядок, а также нулевой порядок в
классическом смысле.

Ключевые слова: верхняя полуплоскость, истинно аналитическая функ-
ция, модельная функция, коэффициенты Фурье, бесконечный порядок, ниж-
ний порядок, задача Неванлинны.
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Нефёдова А. А. Задача Майлза для аналитических функций бесконечного

порядка на полуплоскости, определяемых модельной функцией // Вестник
Бурятского государственного университета. Математика, информатика. 2025.
№ 4. С. 11–20.

11



ВЕСТНИК БУРЯТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА
МАТЕМАТИКА, ИНФОРМАТИКА 2025/4

Введение
Метод рядов Фурье для изучения свойств целых и мероморфных

функций из работ [1], [2], [3, 4] в статье К. Г. Малютина [5] в 2001 г.
был распространен на дельта-субгармонические функции на полуплос-
кости.

Используя этот метод, Дж. Б. Майлз доказал, что если целая функ-
ция бесконечного порядка имеет нули, распределенные на конечной си-
стеме лучей, то её нижний порядок также равен бесконечности. В сов-
местной работе К. Г. Малютина, М. В. Кабанко и Т. В. Шевцовой [7]
результат из работы [6] был распространен на истинно аналитические
функции бесконечного порядка относительно классической функции
роста на верхней полуплоскости.

Настоящая статья является продолжением исследований, начатых
в работе [8]. Мы распространяем результат из работы [7] на истинно
аналитические функции на полуплоскости, рост которых определяет-
ся модельной функцией. Понятие модельной функции роста M , вве-
денное Б. Н. Хабибуллиным [9] (см. также [10]), охватывает широкий
класс функций. В частности, функции, определяемые модельной, мо-
гут иметь бесконечный порядок, а также нулевой порядок в классиче-
ском смысле.

В дальнейшем будем предполагать, что функция M для всех r > 0
удовлетворяет соотношению:

M(2r) ≤ KM(r) (1)

при некотором K > 0, не зависящем от r.
Для доказательства наших утверждений мы использовали метод ря-

дов Фурье дельта-субгармонических функций на полуплоскости, раз-
работанный К. Г. Малютиным [5].

1 Предварительные сведения

Мы будем использовать терминологию и определения из работ [8],
[5] и [11]. У нас C(a, r) = {z : |a − z| < r}, B(a, r) = C(a, r), (G —
это замыкание множестваG), x+ неотрицательная часть вещественного
числа x, C+ = {z : Im z > 0}, Ω+ = Ω ∩ C+, для 0 < r1 < r2 множество.

Через AK обозначаем пространство аналитических функций f в
C+, таких, что ln |f | имеет положительную гармоническую мажоран-
ту в каждой ограниченной подобласти C+, JA — пространство истин-
но аналитических функций на C+. Относительно свойств функций из
пространств AK и JA отсылаем читателя к статье [11].

Пусть f — мероморфная функция на замкнутой верхней полуплос-
кости C+, rne

iϕn — полюса f с учетом их кратности, n ∈ N,
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c(r, f) =
∑

1≤rn≤r
sinϕn. В 1925 г. Р. Неванлинна [12] ввёл для функций

f следующие характеристические функции:

A(r, f) =
1

π

r∫
0

(
1

t2
− 1

r2

)
(ln+ |f(t)|+ ln+ |f(−t)|) dt ,

B(r, f) =
2

πr

π∫
0

ln+ |f(reiϕ)| sinϕdϕ ,

C(r, f) = 2

r∫
0

(
1

t2
+

1

r2

)
c(t, f) dt ,

S(r, f) = A(r, f) +B(r, f) + C(r, f) .

Пусть f ∈ JM , λ — её полная мера, λ = λ+ − λ− — разложение
Жордана меры λ. Обозначим

m(r, f) :=
1

r

π∫
0

ln+ |f(reiϕ)| sinϕdϕ =
π

2
B(r, f), r ≥ 1 ,

N(r, f) :=

r∫
1

λ−(t)

t3
dt =

π

2
(A(r, f) + C(r, f) +O(1)) ,

T (r, f) := m(r, f) +N(r, f) +m(1, 1/f) =
π

2
S(r, f) +O(1) ,

λ−(t) = λ−(B(0, t)).

Определение 1. Порядком и нижним порядком функции f ∈ JM
относительно модельной функции M называются величины:

β := β[f ] = lim
r→∞

ln(rT (r, f))

lnM(r)
, α := α[f ] = lim

r→∞

ln(rT (r, f))

lnM(r)
.

Если β = ∞, то f — функция бесконечного порядка, в противном
случае функция f имеет конечный порядок.

2 Коэффициенты Фурье функции f ∈ JM

Пусть λ — полная мера функции f ∈ JM , G — функция Грина

полукруга C+(0, R),
∂G

∂τ
— её производная по внутренней нормали.
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Для функции f справедливо следующее представление в C+(0, R) [13]:

ln |f(z)| = − 1

2π

∫∫
C+(0,R)

G(z, ζ)

Im ζ
dλ(ζ)

+
R

2π

π∫
0

∂G(z,Reiϕ)

∂τ
ln |f(Reiϕ)| dϕ, z ∈ C+(0, R) . (2)

Определим меру λk равенством

dλk(τe
iϕ) =

sin kϕ

sinϕ
τk−1 dλ(τeiϕ), λk(r) = λkB(0, r), k ∈ N .

В точках ϕ = 0, π, отношение
sin kϕ

sinϕ
доопределяется по непрерывности.

Нам понадобится обобщенная формула Карлемана из [13]:

1

rk

π∫
0

ln |f(reiϕ)| sin kϕ dϕ =

r∫
r0

λk(t)

t2k+1
dt+

1

rk0

π∫
0

ln |f(r0e
iϕ)| sin kϕdϕ, k ∈ N,

которая при k = 1 принимает вид:

1

r

π∫
0

ln |f(reiϕ)| sinϕdϕ =

r∫
r0

λ(t)

t3
dt+

1

r0

π∫
0

ln |f(r0e
iϕ)| sinϕdϕ . (3)

В этих обозначениях формулу Карлемана (3) можно записать следую-
щим образом:

T (r, f) = T (r, 1/f) . (4)

Коэффициенты Фурье функции f ∈ JM определяются формулой:

ck(r, f) =
2

π

π∫
0

ln |f(reiϕ)| sin kθ dθ, k ∈ N .

Пусть λ — полная мера f ∈ JM , тогда [15]

ck(r, f) = αkr
k +

2rk

π

r∫
r0

λk(t)

t2k+1
dt, k ∈ N, αk = ck(1, f) .
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Отсюда

ck(r, f) = αkr
k +

rk

πkr2k0

∫∫
C+(0,r0)

sin kϕ

Im ζ
τk dλ(ζ) +

rk

πk

∫∫
D+(r0,r)

sin kϕ

τk Im ζ
dλ(ζ)

− 1

rkπk

∫∫
C+(0,r)

sin kϕ

Im ζ
τk dλ(ζ) , ζ = τeiϕ. (5)

Кроме того, имеет место неравенство:

|ck(r, f)| ≤ 2k

π

π∫
0

| ln |f(reiϕ)|| sinϕdϕ, k ∈ N .

Из последнего неравенства и (4) следует:

rm(r, f) ≥ π

4k
|ck(r, f)|, k ∈ N . (6)

Действительно неравенство (6) следует из соотношений:

π

2kr
|ck(r, f)| ≤ 1

r

π∫
0

(ln+ |f(reiϕ)|+ ln+ |1/f(reiϕ)|) sinϕdϕ

≤ m(r, f) +m(r, 1/f) ≤ 2m(r, f), k ∈ N .

Далее нам понадобится следующая лемма [7].

Лемма 1. Если g ∈ JM и λg ≡ 0, то ln |g(z)| = Im F (z), где F (z) —
целая вещественная функция.

Следующая лемма [6, Лемма 1.1] используется в доказательстве ос-
новной теоремы.

Лемма 2. Пусть θ1, θ2, . . . , θN0 — различные точки полуинтервала
[0, 2π). Для вещественных x символом x∗ обозначается единственное
число из [−π, π), сравнимое с x по модулю 2π. Тогда существует воз-
растающая последовательность I = {nl} натуральных чисел, такая,
что I имеет положительную плотность и

(nlθj)
∗ ∈

(
−π
6
,
π

6

)
, j = 1, . . . , N0, nl ∈ I. (7)
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3 Основной результат

Сформулируем и докажем основную теорему нашей работы.

Теорема 1. Пусть полная мера истинно аналитической функции f
бесконечного порядка относительно модельной функции M распреде-
лена на конечной системе лучей

Lk =

{
z ∈ C : arg z = θk =

πpk
qk

}
k = 1, . . . , N0; pk, qk, N0 ∈ N; pk < qk. Тогда ее нижний порядок также
равен бесконечности.

Доказательство. Не ограничивая общности, можем считать, что
носитель полной меры λf функции f не нагружает некоторую окрест-
ность нуля, т. е. C(0, r0) 6∈ suppλ при некотором r0 > 0.

Используя формулы (5), получаем:

cn(r, f) = αnr
n +

N0∑
k=1

rn sin(θkn)

πnr2n0

r0∫
0

tn−1dλ(t)+

+

N0∑
k=1

rn sin(θkn)

πn

r∫
r0

dλ(t)

tn+1
−

N0∑
k=1

sin(θkn)

rnπn

r∫
0

tn−1dλ(t), n ∈ N .

Из последнего равенства получаем:

cn(r, f) = αnr
n +

N0∑
k=1

sin(θkn)

πn

r∫
r0

1

t

[(r
t

)n
−
(
t

r

)n]
dλ(t), n ∈ N . (8)

Дважды интегрируя по частям в правой части равенства (8), получаем:

cn(r, f) = αnr
n +

2

π

N0∑
k=1

sin(θkn)

Ñ(r) + rn
r∫

r0

Ñ(t)

tn+1
dt


+
n− 1

π

N0∑
k=1

sin(θkn)

r∫
r0

1

t

[(r
t

)n
−
(
t

r

)n]
Ñ(t) dt, n ∈ N , (9)

где Ñ(r) =

r∫
r0

λ(t)

t2
dt.
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По лемме 2 существует последовательность I = {nl} такая, что

(nlθj)
∗ ∈

(
−π
6
,
π

6

)
. Имеем

N0∑
k=1

sin(θknl) =

N0∑
k=1

sin(θknl)
∗ ≥ N0 sin

π

6
=
N0

2
.

Из (9) при n = nl, l ∈ N, получаем:

|cnl
(r, f)|
rnl

≥ N0

π

Ñ(r)

rnl
+

r∫
r0

Ñ(t)

tnl+1
dt

− |αnl
|, nl ∈ N . (10)

Предположим, что порядок функции Ñ(r) бесконечный. Тогда интег-
рал в правой части последнего неравенства неограничен при r → ∞,
поскольку

∞∫
r

Ñ(t)

tn+1
dt ≥ Ñ(r)

nrn
, n ∈ N .

Используя это рассуждение, (6) и (10), получаем требуемое утвержде-
ние.

В противном случае, т. е. если порядок функции Ñ(r) конечный, то
для всех r > 0 Ñ(r) ≤ KMρ(r) при некоторых K > 0 и ρ > 0. Причем
ρ — нецелое число. Тогда из (1) получаем:

K1r
ρ ≥ Ñ(2r) ≥

2r∫
r

λ(t)

t2
dt ≥ λ(r)

2r∫
r

dt

t2
=
λ(r)

2r
,

при некотором K1 > 0, т. е.

λ(r) ≤ 2K1r
ρ+1 .

Тогда из работы [15, Теорема 3] следует, что существует функция
g1 ∈ JA порядка ρ с полной мерой λ. Имеем g = f/g1 ∈ JA и λg ≡ 0.

По лемме 1 |g(z)| = exp(Im F (z)). Здесь F (z) — целая вещественная
функция:

F (z) =

∞∑
n=0

anz
n .

Тот факт, что an ∈ R, для всех n ∈ N, доказывается почленным
дифференцированием ряда Тейлора функции F (z) в точке z = 0.

Если только конечное число an 6= 0, то F (z) — многочлен, следова-
тельно, g и f имеют конечный порядок, что противоречит условию.
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Далее
ck(r, g) = akr

k, k ∈ N .

Отсюда и из (6) получаем:

rm(r, g) ≥ π

4k
|ck(r, g)| = π|ak|rk

4k
, k ∈ N .

Поскольку k — любое фиксированное натуральное число, то функ-
ция g(z) имеет бесконечный нижний порядок.

Для b > 1 имеет место неравенство (ln(ab))+ ≥ (ln a)+ − (ln b)+,
используя которое получаем:

rm(r, g) ≤ rm(r, f) + rm(r, g1) .

Далее из соотношений

lim
r→∞

rm(r, g) ≤ lim
r→∞

rm(r, f) + lim
r→∞

rm(r, g1)

и
lim
r→∞

rm(r, g) =∞, lim
r→∞

rm(r, g1) ≤ ρ <∞ ,

следует, что
lim
r→∞

rm(r, f) =∞ .

Теорема 1 доказана.

Заключение

Экстремальные задачи на открытой полуплоскости, в отличие от
комплексной плоскости, имеют свои особенности, связанные с наличи-
ем границы — вещественной оси. В частности, этим определяется раз-
личие экстремальных задач в классах мероморфных функций порядка
больше единицы и порядка меньше или равного единицы. В настоя-
щей работе мы рассматриваем классы мероморфных функций на полу-
плоскости бесконечного порядка. Формулировка основного результата
не отличается от формулировки результата Майлза для мероморфных
функций на плоскости, однако, для его доказательства используются
совершенно другие определения и вспомогательные сведения, которые
вводятся для мероморфных функций на открытой полуплоскости.
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MILES PROBLEM FOR ANALYTIC FUNCTIONS OF INFINITE
ORDER ON THE HALF-PLANE DEFINED BY A MODEL FUNCTION

Anna A. Nefedova
Senior Lecturer, Department of Information Security,
Kursk State University
33 Radishchev St., Kursk, Russia

Abstract. J. B. Miles (1979) considered entire functions with zeros dis-
tributed on a finite system of rays. In particular, it was proved that if
f is an entire function of infinite order whose zeros are located on a fi-
nite system of rays, then its lower order is also equal to infinity. K. G.
Malyutin, M. V. Kabanko, and T. V. Shevtsova (2022) extended Miles’s
result to truly analytic functions of infinite order with respect to the classi-
cal growth function on the upper half-plane. An analytic function f on the
upper half-plane of a complex variable is called truly analytic if its upper
limit on the real axis is not positive. The total measure of a truly ana-
lytic function is a positive measure, which justifies the term ”truly analytic
function”. If the order of a truly analytic function is equal to infinity, then
the function is called a function of infinite order. Otherwise, the function
f is called a function of finite order. In this paper we prove a similar result
in the space of functions of infinite order with respect to the model growth
function of analytic functions on the upper half-plane.

Keywords: upper half-plane, truly analytic function, model function,
Fourier coefficients, infinite order, lower order, Nevanlinna problem.
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