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Аннотация. В статье предложено обоснование к методу Рауса — Ляпунова для
нахождения стационарных движений механических автономных консервативных
систем. Изложение вначале проведено для автономных гамильтоновых систем на
которые наложены дополнительные условия в виде некоторых алгебраических ра-
венств. Их применение осуществляется  известным способом Лагранжа неявного
учитывания отмеченных условий, который состоит в формировании связки из га-
мильтониана исходной системы и алгебраической суммы указанных условий, ум-
ноженных на неопределенные вещественные множители. Последние в дальнейшем
рассматриваются наравне с переменными системы.

При новом взгляде на интегрирование гамильтоновых систем как бесконечно ма-
лое контактное преобразование последнее по существу свелось к нахождению поло-
жений равновесия преобразованной системы с учетом введенных ограничений.

Принимая во внимание то обстоятельство, что в консервативных системах га-
мильтониан состоит из суммы кинетической и потенциальной энергий, этот под-
ход в точности переносится на механические автономные консервативные систе-
мы общего вида. Для этого формируется связка, состоящая из алгебраической
суммы первых интегралов исходной системы уравнений движения  с неопреде-
ленными вещественными множителями, участвующими наравне с  фазовыми
переменными.

Условие постоянства решений для стационарного движения сводит задачу их
нахождения к обращению в нуль всех частных производных по фазовым пере-
менным и множителям Лагранжа как в гамильтоновых системах, так и механиче-
ских автономных консервативных системах общего вида.

В общем случае установлено несовпадение найденных методом Рауса —
Ляпунова стационарных движений с решениями положений равновесия изучае-
мой системы.

Ключевые слова: консервативная автономная система, стационарное движе-
ние, первый интеграл, связка интегралов.
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Введение
Во многих механических консервативных автономных системах,

описываемых дифференциальными уравнениями вида
( )i ix f x=&          ( 1,2, , )i N= K ,                                         (1)

часто проводится  изучение некоторых динамических свойств, связанных
с нахождением стационарных движений и последующим исследованием
их устойчивости. Термин стационарное движение и в настоящее время
не твердо установлен, в основном [1] он означает установившееся со
временем  и не зависящее от времени движение. Там же отмечено, что
они имеют некоторую аналогию с состоянием равновесия.

Традиционно они находятся развитым методом  Рауса — Ляпунова [2–4],
основанным на полном наборе известных первых интегралов системы (1):

1 1 2 2( ) , ( ) , , ( ) (1 )k kV x c V x c V x c k N= = = < <L ,                      (2)
которые могут быть как общими,  так и частными.  Вообще говоря,  при
неполном наборе первых интегралов могут быть определены только
некоторые стационарные движения. Указанным методом исследованы
многие механические системы, начало которым положил П. А. Кузьмин [5].

Вместе с тем иногда в отечественной литературе под стационарными
движениями полагаются положения равновесия системы (1), являющиеся
решениями алгебраической системы:

1 2( ) 0, ( ) 0, , ( ) 0Nf x f x f x= = =L .                                  (3)
Отсюда возникает вопрос об установлении соответствия или

некоторого отличия между упомянутыми способами представления
стационарных движений.

1 Первоначальные понятия стационарных движений
При изучении обсуждаемого вопроса следует обратиться к начальному

понятию стационарные движения, которое восходит к консервативным
автономным системам, описываемым дифференциальными уравнениями
в канонических переменных Гамильтона [1; 6]. В них под стационарным
понимается такое движение системы с циклическими переменными, при
котором нециклические координаты и  соответствующие циклическим
координатам скорости сохраняют с течением времени постоянные
значения [1, с. 257]. Отмеченное свойство постоянства значений всех
координат А. М. Ляпунов [4] обобщил на механические консервативные
автономные системы общего вида.

В дальнейшем будем придерживаться изложения, близкого к [1].
Рассмотрим механическую гамильтонову систему:

( , ) ( , ), ( 1,2, , )i i
i i

H q p H q pq p i n
p q

¶ ¶
= = - =

¶ ¶
& & K ,              (1.1)

где ( , )H q p  — функция Гамильтона; ( 1, , )iq i n= K  — позиционные
координаты; ip  — соответствующие им импульсы. Будем здесь
допускать отсутствие циклических переменных, которые в дальнейшем
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не обязательны. Как ранее упоминалось [1], стационарные движения
должны быть постоянными значениями и поэтому соответствуют
решениям системы:

( , ) ( , )0, 0 ( 1,2, , )
i i

H q p H q p i n
q p

¶ ¶
= = =

¶ ¶
K .            (1.2)

Дополнительно в рассмотрение вводятся некоторые алгебраические
равенства [1, с. 384]:

1 2( , ) 0, ( , ) 0, , ( , ) 0 (1 )kw q p w q p w q p k n= = = < <K .    (1.3)
В частности, такие алгебраические соотношения могут выражать

определенные наложенные связи в системе (1.1), допустимые для
консервативных систем, а также первые интегралы, принимающие
конкретные (фиксированные) значения. При такой постановке
нахождение стационарных движений условно может выражать

З А Д А Ч А 1,  состоящая в совместном выполнении условий (1.1)  и
(1.3):

1
( , ) ( , ), 0, ( , ) 0, , ( , ) 0i i k

i i

H q p H q pq p w q p w q p
p q

¶ ¶
= = - = = =

¶ ¶
& & K .    (1.4)

Такая переопределенная система нелинейных алгебраических
уравнений для консервативной системы часто допускает вещественные
решения, иногда — не единственные.

Но эту задачу можно решать другим путем, используя формулировку
нового взгляда  К. Г. Якоби  на интегрирование гамильтоновых систем
[1, с. 403]. Согласно такому подходу интегрирование (1.4) сводится к
отысканию бесконечно малого невырожденного контактного
преобразования переменных к такой же гамильтоновой системе  с
функцией Гамильтона:

1
( , , ) ( ( , ), ( , )) ( ( , ), ( , ))

k

j
j

K Q P H q Q P p Q P w q Q P p Q Pl l
=

= -å            (1.5)

при вещественных множителях ( 1,2, , )j j kl = K .
При этом подчеркивается аналитическая зависимость прежних

координат , ( 1,2, )i iq p i n= K  от  новых позиционных координат
( 1,2, )iQ i n= K  и соответствующих им импульсов ( 1,2, )iP i n= K .
В новых переменных уравнения движения запишутся:

( , , ) ( , , ), ( 1,2, , )i i
i i

K Q P K Q PQ P i n
P Q

l l¶ ¶
= = - =

¶ ¶
& & K .

При таком подходе для конечной цели приведения новых переменных
к постоянным значениям , ( 1,2, )i iQ const P const i n= = = K  [1, с. 403]
должна выполняться система:

( , , ) ( , , )0, 0 ( 1,2, , )
i i

K Q P K Q P i n
Q P

l l¶ ¶
= = =

¶ ¶
K ,                   (1.6)

аналогичная (1.2).  Тогда из (1.4) следуют уравнения:
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1

1

( ( , ), ( , )) ( ( , ), ( , )) ( , ) ,

( ( , ), ( , )) ( ( , ), ( , )) ( , ) .

k
j

j
j i i i

k
j

j
j i i i

w q Q P p Q P H q Q P p Q P K Q P
Q Q Q

w q Q P p Q P H q Q P p Q P K Q P
P P P

l

l

=

=

¶ì ¶ ¶
= -ï ¶ ¶ ¶ï

í ¶ ¶ ¶ï = -
ï ¶ ¶ ¶î

å

å

В предположении выполнения (1.2) и (1.6) должны быть справедливы
следующие равенства:

1

1

( ( , ), ( , ))
0 ( 1,2, , ),

( ( , ), ( , ))
0 ( 1, , ).

k
j

j
j i

k
j

j
j i

w q Q P p Q P
i n

Q
w q Q P p Q P

j k
P

l

l

=

=

¶ì
= =ï ¶ï

í ¶ï = =
ï ¶î

å

å

K

K

Тогда задачу 1 можно математически выразить в следующем виде:

1

1

( ( , ), ( , )) 0,

( ( , ), ( , )) 0,

( ( , ), ( , ) 0 ( 1, , ; 1, , ).

k

j
j i

k

j i

w q Q P p Q P
Q

w q Q P p Q P
P

w q Q P p Q P i n j k

l
=

=

¶ì
=ï ¶ï

ï ¶
=í ¶ï

ï = = =
ï
î

å

å
K K

                 (1.7)

З А Д А Ч А 2.  Нахождение стационарных движений системы (1.1)
при дополнительных множествах (1.3) можно свести к выполнению
равенств (1.7).

Но в последних уравнениях участвуют новые переменные.  Чтобы
учесть предыдущие переменные, введем следующие обозначения:

1
1 1 2 1 2

( , ), ( , ) ( , , , , , , , )
k

j j
j n n

R R R R R R R RR w q p h
q p q q q p p p

l
=

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¢ ¢ ¢= = =
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶å L L ,

(обозначение «штрих» — символ транспонирования).

0
1 2 1 2

( , ) ( , , , , , , , )
n n

R R R R R R R Rh
Q P Q Q Q P P P
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¢ ¢ ¢= =
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

L L ,
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1 2 1 2

1 1 1 1 1 1

1 2 1 2

2 2 2 2 2 2

1 2 1 2

1 2 1 2

1 1 1 1 1 1

1 2 1 2

2 2 2 2 2 2

n n

n n

n n

n n n n n n

n n

n n

q pq q p p
Q Q Q Q Q Q

q pq q p p
Q Q Q Q Q Q

q pq q p p
Q Q Q Q Q Q

T
q pq q p p

P P P P P P
q pq q p p

P P P P P P

¶ ¶¶ ¶ ¶ ¶
¶ ¶ ¶ ¶ ¶ ¶

¶ ¶¶ ¶ ¶ ¶
¶ ¶ ¶ ¶ ¶ ¶

¶ ¶¶ ¶ ¶ ¶
¶ ¶ ¶ ¶ ¶ ¶

=
¶ ¶¶ ¶ ¶ ¶

¶ ¶ ¶ ¶ ¶ ¶
¶ ¶¶ ¶ ¶ ¶

¶ ¶ ¶ ¶ ¶ ¶

L L

L L

L L L L L L L L

L L

L L

L L

1 2 1 2n n

n n n n n n

q pq q p p
P P P P P P

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷¶ ¶¶ ¶ ¶ ¶ç ÷
ç ÷¶ ¶ ¶ ¶ ¶ ¶è ø

L L L L L L L L

L L

.

Отсюда легко проверить выполнение тождества 0 1h Th= .
Тогда для выполнения (1.7) при невырожденном преобразовании

должно быть 1 0h = .  В результате задача 2  сводится к более конкретной
формулировке.

З А Д А Ч А 3. Стационарные движения системы (1.1) удовлетворяют
системе алгебраических уравнений:

1

1

( , )
0 ( 1,2, , ),

( , )
0 ( 1, , ),

( , ) 0.

k
j

j
j i

k
j

j
j i

j

w q p
i n

q
w q p

j k
p

w q p

l

l

=

=

¶ì
= =ï ¶ï

ï ¶ï = =í ¶ï
ï =
ï
ïî

å

å

K

K                            (1.8)

Конечно, неопределенные множители Лагранжа в последней системе
можно уменьшить, полагая 1 0l ¹  и вводя относительные величины

1/j jm l l= для 2, ,j k= K .
Применяя теорему Лагранжа [6] об условном экстремуме, можно

систему (1.8) интерпретировать как экстремум 1( , )w q p  при выполнении
остальных алгебраических равенств 2 ( , ) 0, , 0kw q p w= =K . Фактически
задача 3 в постановке (1.8) представляет систему (2 )n k+  уравнений от
(2 )n k+  переменных. В общем случае для консервативных нелинейных
систем такие уравнения допускают решения и зачастую не единственные.
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При этом допускается существование вещественных решений системы
(1.8) для некоторых индексов { }1,2, ,j nÎ K ,  когда выполняется хотя бы
одно из соотношений  вида:

( , ) ( ( , ), ( , )) 0,

( , ) ( ( , ), ( , )) 0.

j j

j j

K Q P H q Q P p Q P
Q Q

K Q P H q Q P p Q P
P P

¶ ¶æ = ¹ç ¶ ¶ç
ç ¶ ¶

= ¹ç ¶ ¶è

                             (1.9)

Тогда имеет место
З А М Е Ч А Н И Е 1.
Отдельные решения системы (1.8) могут не удовлетворять системе

вида (1.2) для некоторых { }1,2, ,j nÎ K , хотя при одном из условий (1.9).
Так как многие условия 0 ( 1,2, , )jw j k= = K , как ранее оговаривалось,

вносят дополнительные ограничения в систему (1.1) и не являются ее
решениями, то решения системы (1.2) не могут совпадать с решениями
системы (1.8). Отсюда следует

З А М Е Ч А Н И Е 2.
Стационарные движения системы (1.1) при ограничениях (1.3),

получаемые из системы (1.8), не являются решениями положений
равновесия (1.2).

2 Условия стационарности для механических систем общего вида
В консервативных автономных механических системах [1; 6] функция

Гамильтона ( , )H q p  представляет сумму кинетической и потенциальной
энергий. Для тех же механических систем, записанных не в канонических
переменных, сумма упомянутых энергий составляет полную энергию
системы 0 ( )V x , где ( 2 )Nx R N nÎ = . Поэтому в механических
консервативных системах общего вида нет необходимости осуществлять
преобразование к каноническим переменным, полагая лишь

0( , ) ( )H q p V x= . Вместо алгебраических условий полагаются остальные
известные первые интегралы вида (2), как общие, так и частные.

 Конечно, здесь вместо функции Лагранжа вида (1.5) будет участвовать
связка из первых интегралов:

0
1

( , ) ( ) ( ( ) )
k

j j j
j

K x V x V x cl l
=

= - -å .

Следует отметить, что часть констант интегрирования для общих
интегралов может быть произвольной,  а другая часть констант в
количестве 1 1(1 )k k k< <  имеет конечные конкретные (фиксированные)
значения.   При этом  некоторые интегралы могут быть общими,  как,
например, интеграл Пуассона вида 2 2 2

1 2 3 1g g g+ + = , другие — частными.
В частности,  для задачи о вращении твердого тела вокруг неподвижной
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точки [1; 6; 8] в своих обозначениях частный интеграл Гесса
0 0 0Ax p Cz r+ = ,  Горячева —  Чаплыгина 1 2 34( ) 0p q rg g g+ + = .   В этом

состоит отличие от известного способа Лагранжа для условного
экстремума [7], когда все условия заданы конечными конкретными
значениями. При этом аналогично системе (1.7) для отыскания решений
стационарности представляется иная система:

1

( , ) 0 ( 1,2, , ),

( , ) 0 ( 1, , ).

i

j

K x i N
x

K x j k

l

l
l

¶ì = =ï ¶ï
í ¶ï = =

¶ïî

K

K

                                 (2.1)

Хотя последняя система недоопределена, так как имеется 1( )N k+
уравнений от ( )N k+  переменных, она допускает двойную трактовку:

1) ее можно рассматривать как экстремум функции 0 ( )V x  при
условии выполнения остальных 1k  интегралов с фиксированными
константами (можно рассматривать также при условии выполнения всех
известных k  первых интегралов с остальными произвольными
константами, так как они не влияют на нахождение решений последней
системы ввиду произвольных констант интегрирования), что и составляет
основу метода Рауса — Ляпунова [2–4];

2)   на любом стационарном движении (0) (0) (0) (0)
1 2( , , , )Nx x x x= K ,

найденном при соответствующих (0) (0) (0) (0)
1 2( , , , )kl l l l= K , в связке

интегралов 0) (0)( , )K x l  не содержатся линейные слагаемые по фазовым
переменным.

Последнее позволяет представлять 0) (0)( , )K x l  на стационарном
движении функцией, разложение которой по отклонениям от
стационарного движения начинается с членов второго наименьшего
порядка.   Тогда к ней можно применять второй метод Ляпунова для
исследования на устойчивость найденного стационарного движения. Об
этом утвердительно подчеркивается в [4].

Так как интеграл полной энергии участвует одинаково с остальными
первыми интегралами, то можно в качестве испытываемого на экстремум
выражения рассматривать другой первый интеграл ( )jV x , для которого

0jl ¹  и jc  не относится к фиксированной константе.  Тогда  можно
рассматривать экстремум ( )jV x  при условии выполнения остальных
первых интегралов.
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Очевидно, для полного набора первых интегралов решение системы
алгебраических уравнений, обращающих в нуль все частные производные
по фазовым переменным связки интегралов, совпадает с решениями
правой части уравнений движения (1). Но для стационарных движений,
кроме того, должны выполняться первые интегралы с фиксированными
константами, если они есть (первые интегралы с неопределенными
константами выполняются всегда). Это составляет главное отличие от
решений положений равновесий. Требование существования первых
интегралов с фиксированными константами при нахождении
стационарных движений довольно существенно. Так, в задаче о вращении
твердого тела вокруг неподвижной точки [1;  6;  8],  где 6N = , уравнения
движения допускают лишь общий интеграл 2 2 2

1 2 3 constg g g+ + = .  А в
аналитической механике для этой же задачи имеет смысл только интеграл
Пуассона 2 2 2

1 2 3 1g g g+ + = .
Наибольший интерес представляют механические системы, не

содержащие первые интегралы с фиксированными константами.
Возникает вопрос о возможности их существования в механике. Для
таких систем, если они есть, стационарные движения будут совпадать с
решениями положений равновесия.

Особый интерес вызывает неполный набор первых интегралов, при
котором возможны те же стационарные движения. Вообще этот вопрос
решается эмпирически в каждой конкретной системе. А в самом общем
случае, чтобы не пропустить какие-то стационарные движения,
необходим полный набор первых интегралов.

В целом для метода Рауса — Ляпунова важно наличие более полного
набора первых интегралов уравнений движения и система  уравнений
вида (1) вовсе не обязательна.

Аналогично замечанию 2 здесь имеет место
З А М Е Ч А Н И Е 3.
Стационарные движения для механической автономной

консервативной (1)  системы,  получаемые из системы (2.1),  в общем
случае не совпадают с  решениями положений равновесия (1).

Как ранее упоминалось, совпадение возможно только при отсутствии
первых интегралов с фиксированными константами.

Заключение
В статье не проводится исследование какой-либо конкретной системы,

но предложено теоретическое обоснование метода Рауса — Ляпунова для
механических консервативных автономных систем.  Оно основывается на
теории гамильтоновых систем, когда к уравнениям движения с гамильто-
нианом ( , )H q p  добавляются некоторые наложенные связи в виде алгеб-
раических равенств. Измененный гамильтониан тогда по способу Ла-
гранжа состоит из  линейной комбинации исходного гамильтониана и за-
данных равенств с неопределенными вещественными множителями.
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Такой подход в точности переносится и на механические автономные
консервативные системы, где аналогом гамильтониана является интеграл
полной энергии, состоящий из суммы кинетической и потенциальной энер-
гий.  В результате уравнения для нахождения стационарных движений сво-
дятся к экстремуму интеграла полной энергии при условии выполнения
остальных первых интегралов. Это и составляет основу метода Рауса —
Ляпунова для механических автономных консервативных систем.
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ON STEADY-STATE MOTIONS OF A MECHANICAL
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Abstract. This article proposed a justification for the Routh-Lyapunov method for
finding the stationary motions of autonomous conservative mechanical systems. The
presentation was initially conducted for autonomous Hamiltonian systems, on which
additional conditions in the form of certain algebraic equalities were imposed. Their
application is carried out by the well-known Lagrange method of implicitly taking into
account the indicated conditions, which consists of forming a bundle of the Hamilto-
nian of the initial system and the algebraic sum of the specified conditions, multiplied
by undefined real factors. This method consists of forming a connection between the
Hamiltonian of the original system and the algebraic sum of the specified conditions,
multiplied by undefined real factors. The latter are subsequently considered on an equal
basis with the system variables.
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Using a new view of the integration of Hamiltonian systems as an infinitesimal con-
tact transformation, the latter essentially reduced to finding the equilibrium positions of
the transformed system, taking into account the introduced constraints.

Taking into consideration the fact that in conservative systems the Hamiltonian
consists of the sum of kinetic and potential energies, this approach is precisely trans-
ferred to mechanical autonomous conservative systems of general form. For this pur-
pose, a bundle is formed consisting of the algebraic sum of the first integrals of the
original system of equations of motion with indefinite real multipliers participating on
an equal basis with the phase variables.

The condition of constancy of solutions for stationary motion reduces the problem
of finding them to the vanishing of all partial derivatives with respect to phase vari-
ables and Lagrange multipliers both in Hamiltonian systems and in mechanical
autonomous conservative systems of general form.

In the general case, a discrepancy was established between the found by the Routh-
Lyapunov method of the stationary motions and the solutions of the equilibrium posi-
tions of the studied system.

Keywords: conservative autonomous system, steady-state motion, first integral,
bundle of integrals.
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