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Аннотация. В настоящей статье рассмотрены взаимосвязанные линей-
ные системы обыкновенных дифференциальных и алгебраических уравне-
ний, которые записаны в векторно-матричном виде. Такие постановки доста-
точно часто встречаются в важных прикладных задачах энергетики, кине-
тической химии, биологии, моделировании многозвеньевых систем и других
областей. В отечественной и зарубежной литературе их принято называть
дифференциально-алгебраическими уравнениями. Предполагается, что чис-
ло уравнений в системе меньше, чем размерность искомой вектор-функции.
Используя результаты теории недоопределенных систем линейных алгебраи-
ческих уравнений, дано понятие нормального решения для выделенного клас-
са задач. Для их численного решения предложен вариант коллокационно-
вариационных разностных схем, основанных на решении задачи математи-
ческого (квадратичного) программирования специального вида. Приведены
результаты численных расчетов нескольких модельных примеров, которые
иллюстрируют работоспособность данного подхода.
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ВведениеРассмотрим задачу

A(t)x′(t) +B(t)x(t) = f(t), t ∈ [0, 1], (1)

где A(t), B(t) — (m× n)—матрицы, f(t) и x(t) — заданная n-мерная и
искомая m-мерная вектор-функции.

О начальных данных будет сказано позже. Предполагается, что эле-
менты A(t), B(t), f(t) обладают той гладкостью, которая необходима
для проведения рассуждений.

При m = n и условии detA(t) ≡ 0 будем иметь стандартные
дифференциально-алгебраические уравнения (ДАУ). По качественно-
му исследованию и численным методам решения начальной задачи
ДАУ вышло и продолжает выходить огромное число публикаций, кото-
рые невозможно перечислить. Приведем лишь некоторые монографии,
в которых приведены различные подходы к исследованию и разработ-
ке численных алгоритмов и прикладные задачи, описываемые ДАУ [2],
[6], [7], [8], [12], [13]. В этих же монографиях приведена обширная биб-
лиография по данному вопросу.

При m > n и условии rankA(t) < n, ∀t ∈ [0, 1] мы имеем переопреде-
ленные ДАУ. Такие постановки задач возникают, например, при мате-
матическом моделировании некоторых технических процессов: модели
гидроцепей [1], уравнения со связями [6, с. 524].

При m < n мы имеем недоопределенные ДАУ или ОДУ, которые
даже при корректно заданных начальных условиях имеют бесконеч-
ное множество решений. Насколько известно авторам, для таких ДАУ
практически нет исследований. Исключение составляет [13, p. 511], где
подчеркнуты принципиальные трудности исследования таких уравне-
ний в терминах проекторов и приведено понятие их сложности (индекс
один и два). Также отметим статьи [9], [10], где исследованы ДАУ с пря-
моугольными матрицами, для которых получены условия расщепления
исходной задачи на более простые.

1 Постановка задачи
Вернемся к системе (1) при m < n. Вначале рассмотрим случай,

когда
rankA(t) = const = m ∀t ∈ [0, 1], (2)

т. е. матрица A(t) имеет полный ранг. Остановимся на выборе началь-
ных условий. Если для стандартных ОДУ задают x0 = x(0), то для (1)
с условием (2) естественно задавать

A(0)x(0) = a, (3)

где a — заданный m-мерный вектор.
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Приведем необходимые в дальнейшем изложении обозначения и све-
дения.

Определение 1. (см., напр., [2], [4]) Матрица D+ называется псев-
дообратной для матрицы D, если она является решением матричных
уравнений:

• DD+D = D, D+DD+ = D+

• (DD+)>D = D+D, (DD+)> = D+.

Матрица D+ существует и определена единственным образом
[2],[3],[4]. Если элементы матрицы D(t) ∈ Ck

[0,1] и rankD(t) = const,
∀t ∈ [0, 1], то матрица D+(t) также определена единственным образом
и ее элементы принадлежат Ck

[0,1](см., напр., [7]).
Рассмотрим систему линейных алгебраических уравнений (СЛАУ)

Gz = b, (4)

где G — (m × n) матрица; b — заданный; z — искомый вектор. Пусть
z ∈ Rn множество векторов, которые минимизируют ‖Gz − b‖ в евкли-
довой метрике. Вектор z∗ называется нормальным решением системы
(4), если z∗ ∈ Z и при этом сам имеет минимальную норму в евклидо-
вой метрике.

Нормальное решение (4) всегда существует и единственно [3], [5] и
находится по формуле (см., напр., [3]):

z∗ = G+b. (5)

По аналогии с неопределенными СЛАУ приведем
Определение 2. Нормальным решением уравнения (1) с условиями

(2),(3) назовем решением ОДУ вида:

x′(t) +A+(t)B(t)x(t) = A+(t)f(t), t ∈ [0, 1], (6)

x(0) = A+(0)a. (7)

Рассмотрим другой случай, а именно

rankA(t) = const = l < m, (8)

но
rank[A(t) + (E −A(t)A+(t))B(t)] = const = m. (9)

Такие системы называют ДАУ индекса 1 [13]. Дифференцируя (1) и
умножая полученное на матрицу V (t) = E − A(t)A+(t) в силу опреде-
ления 1 (первое уравнение), имеем
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V (t)(A
′
(t) +B(t))x

′
(t) + V (t)B

′
(t)x(t) = V (t)f

′
(t). (10)

Суммой данной системы и исходной (1) является

A1(t)x
′(t) +B1(t)x(t) = f1(t), (11)

где A1(t) = A(t) + V (t)(A
′
(t) + B(t)), B1(t) = B(t) + V (t)B

′
(t), f1(t) =

f(t) + V (t)f
′
(t).

При выполнении условий (8) и (9) можно показать, что rankA1(t) =
const = m, то есть путем неособенных преобразований и дифференци-
рования мы свели ДАУ с условием (7) к задаче с условием (2). Опи-
шем выбор начальных условий для (11), которые были заданы в виде
(3). Умножая (1) на матрицу V (t) = E − A(t)A+(t), имеем при t = 0
V (t)B(0)x(t) = V (0)f(0).

В отличие от случая (2) здесь rankA(t) = l < m, то есть СЛАУ
A(0)x(0) = a имеет неполный ранг. Умножая (1) на матрицу V (t) и
полагая, что t = 0, имеем V (0)B(0)x(0) = V (0)f(0). Суммой данного
начального условия и условия (3) является

(A(0) + V (0)B(0))x(0) = a+ V (0)f(0). (12)

В силу (8) СЛАУ (12) имеет полный ранг, поэтому точно так же,
как и в случае (2),

x(0) = (A(0) + V (0)B(0))+(a+ V (0)f(0)). (13)

Итак, мы редуцировали ДАУ (1) с входными матрицами, удовлетво-
ряющими условиям (8) и (9), и начальными условиями (3) к ДАУ (11)
полного ранга с начальными условиями (13), которое имеет единствен-
ное нормальное решение.

2 Численный алгоритм
Стандартные разностные схемы, разработанные для численного ре-

шения как ОДУ, так и некоторых классов ДАУ (при m = n), прин-
ципиально не применимы для рассматриваемых задач в силу того,что
матрицы A(t), B(t) являются прямоугольными и могут иметь непол-
ный ранг.

Ранее авторами были предложены коллокационно-вариационные
схемы для задачи (1) [11] с начальными условиями x(0) = 0. Эти под-
ходы не требуют вычисления производных выходных данных, весьма
просты в программной реализации. Такие методы неплохо себя зареко-
мендовали на ряде известных тестовых примеров. Эти алгоритмы мож-
но легко перенести на недопределенные ДАУ. Приведем один из таких
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методов с условием (3). Стандартно обозначим ti = ih, i = 0, 1, ..., N ,
h = 1/N , Ai = A(ti), Bi = B(ti) fi = f(ti), xi ≈ x(ti) и применим для
(1) двухшаговую формулу дифференцирования назад [6]

Ai+1(3xi+1 − 4xi + xi−1) + 2hBi+1xi+1 = 2hfi+1, i = 1, 3, ..., N. (14)

Предположим при этом, что матрица A(t) или A(t) + (E −
A(t)A+(t))B(t) полного ранга. Начальные условия x0 вычислены по
формуле x(0) = A+(0)a для случая rankA(t) = m или по формуле (13)
для случая rankA(t) = l < m и rankA(t) + V (t)B(t) = m. В резуль-
тате, дифференцируя (14) на каждом интервале [ti−1, ti=1], мы име-
ем недоопределенную СЛАУ размером m× 2n. Предлагается смотреть
на (14) как на ограничения типа равенств для поиска минимума це-
левой функции, которая аппроксимирует квадрат нормы приближен-
ного решения. Остановимся на выборе этой целевой функции. Пусть
‖Li(t)‖, t ∈ [ti−1, ti+1] — интерполяционный вектор-полином второй
степени, проходящий через точки (ti−1, xi−1), (ti, xi), (ti+1, xi+1). Тогда
‖Li(t)‖2, где t ∈ [ti−1, ti+1], будем находить по формуле:

‖Li(t)‖2 =

∫ ti+1

ti−1

[
L>i (t)Li(t) + (L>i (t))′L′i(t) + (L>i (t))′′L′′i (t)

]
dt ≈

≈ 2h ‖xi+1 − 2xi + xi−1‖2 + 2h ‖3xi+1 − 4xi + xi−1‖2 + 2h ‖xi+1‖2 .

Здесь норма вектора понимается как евклидова. В силу того, что умно-
жение целевой функции на ненулевой скаляр не влияет на поиск аргу-
мента условного минимума, мы будем иметь следующую задачу.

Найти

min ‖xi+1 − 2xi + xi−1‖2 +
h2

4
‖3xi+1 − 4xi + xi−1‖2 + h4 ‖xi+1‖ (15)

при ограничениях (14). Так как шаг сетки мал, отбросим последнее
слагаемое в (15). Тогда на каждом интервале [ti−1, ti+1] получим задачу
на условный минимум: найти minΦ(xi+1, xxi), где

Φ(xi+1, xxi) = ‖xi+1 − 2xi + xi−1‖2 +
h2

4
‖3xi+1 − 4xi + xi−1‖2 , (16)

при ограничениях (14). Стандартным образом, используя метод мно-
жителей Лагранжа, перейдем от данной задачи к задаче на безуслов-
ный минимум функции Лагранжа:

Z(xi+1, xi,Λ) =
h2

4
‖−xi+1 + 4xi − 3xi−1‖2 + ‖xi+1 − 2xi + xi−1‖2 +

(17)
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+Λ> [(3Ai+1 + 2hBi+1)xi+1 − 4Ai+1xi +Ai+1xi−1 − 2hfi+1] ,

где Λ = (λ1, λ2, ..., λn)> – m-мерный вектор множителей Лагранжа.
Векторные аргументы xi+1, xi,Λ, при которых функция (17) будет до-
стигать минимума, удовлетворяют следующей СЛАУ (2 + h2

2 )E −(4 + 2h2)E (3Ai+1 + 2hBi+1)
>

−(4 + 2h2)E (8 + 8h2)E −4A>i+1

3Ai+1 + 2hBi+1 −4Ai+1 0

 xi+1

xi
Λ

 =

(18)

=

 −(2 + 3
2h

2)E
(4 + 6h2)E
−Ai+1

xi−1 +

 0
0
2fi+1

 .

Начальное условие в зависимости от матриц A(t), B(t) нужно находить
либо по формуле x0 = A+(0)a, либо по формуле (13).

3 Численные расчеты

Приведем численные расчеты модельных примеров. Здесь принято
обозначение err = max

i=i,N
‖xi − x(ti)‖, а норма n-мерного вектора y за-

дается как ‖y‖ = max
1≤j≤n

|yj |, где xi находим по алгоритму (18), x(ti) —
нормальное решение.

Пример 1.1 Рассмотрим недоопределенное ОДУ

(1 2)x′(t) + (3 4)x(t) = 0, (1 2)x(0) = 5.

Псевдообратная матрица: A+(t) = (1/5 2/5)>.
Нормальное решение данного примера является решением системы

ОДУ

x′(t) +

(
3/5 4/5
6/5 8/5

)
x(t) =

(
0
0

)
, x(0) =

(
1
2

)
.

Данная задача имеет следующее решение:
x(t) =(exp(−11

5 t), 2 exp(−11
5 t))

>. Результаты расчетов этого при-
мера представлены в таблице 1.

Таблица 1

h 0.1 0.05 0.025 0.025
err 0.2 0.1 0.0543 0.0276
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Пример 2. Рассмотрим недоопределенное ДАУ

(
1 2 3
0 0 0

)
x′(t)+

(
1 1 1
2 3 0

)
x(t) =

(
6
0

)
,

(
1 2 3
0 0 0

)
x(0) =

(
6
0

)
.

Продифференцируем вторую строку

(
1 2 3
2 3 0

)
x′(t)+

(
1 1 1
0 0 0

)
x(t) =

(
6
0

)
,

(
1 2 3
2 3 0

)
x(0) =

(
6
0

)
.

Псевдообратная матрица:

A+(t) =

 − 3
118

10
59

11
59

13
59

33
118 −12

59

 .

Нормальное решение данного примера является решением системы
ОДУ

x′(t) +

 − 3
118 − 3

118 − 3
118

1
59

1
59

1
59

33
118

33
118

33
118

x(t) =

 0
0
0

 , x(0) =

 −9/59
6/59
117/59

 .

Данная задача имеет следующее решение:

x(t) = (− 9

59
exp(−19

59
t),

6

59
exp(−19

59
t),

117

59
exp(−19

59
t))>.

Результаты расчетов этого примера представлены в таблице 2.

Таблица 2

h 0.1 0.05 0.025 0.025
err 0.024 0.01 0.0043 0.002

Расчеты показывают, что алгоритм справляется с решением недо-
определенных ОДУ и ДАУ с первым порядком точности.

Заключение
В статье было введено понятие нормального решения для неопреде-

ленных ОДУ и выделенного класса ДАУ. Был предложен достаточно
простой алгоритм для приближенного нахождения их нормального ре-
шения. Данный алгоритм был протестирован на модельных примерах,
которые продемонстрировали его работоспособность. В дальнейшем ав-
торы планируют создать другие, более точные, методы.
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Abstract. In the article interconnected linear systems of ordinary differ-
ential and algebraic equations written in vector-matrix form are considered.
Such formulations are frequently encountered in important applied prob-
lems in energy, kinetic chemistry, biology, multi-link system modeling, and
other fields. In Russian and international literature, they are commonly
referred to as differential-algebraic equations. It is assumed that the num-
ber of equations in the system is smaller than the dimension of the desired
vector function. Using results from the theory of underdetermined systems
of linear algebraic equations, the concept of a normal solution is developed
for a singled out of problems. For their numerical solution, a variant of
collocation-variational difference schemes based on solving a special type of
mathematical (quadratic) programming problem is proposed. The results
of numerical calculations of several model examples are presented, which
illustrate the effectiveness of this approach.

Keywords: differential-algebraic equations, underdetermined systems,
Lagrange multiplier method, collocation, difference schemes, systems of
linear algebraic equations, initial conditions, matrix rank, objective func-
tion.

For citation
Bulatov M. V., Solovarova L. S. A Note on Underdetermined

Differential-Algebraic Equations // Bulletin of Buryat State University.
Mathematics, Informatics. 2025. N. 4. P. 31–39.

The article was submitted 30.10.2025; approved after reviewing
21.11.2025; accepted for publication 26.11.2025.

39


