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Аннотация. В работе рассматривается задача минимизации вырожден-
ного квадратичного функционала на траекториях квазилинейной управляе-
мой системы. Особенность задачи состоит в том, что решение задачи суще-
ствует в пространстве обобщенных функций. Для исходной задачи строится
вспомогательная задача. Её решение существует в пространстве абсолютно
непрерывных функций. Для ее решения применяются методы разложения по
параметру и принцип максимума Л. С. Понтрягина. В результате конечно-
го числа итераций строится субоптимальное управление для вспомогатель-
ной задачи. С помощью этого управления конструируется субоптимальное
управление для исходной задачи. Это управление имеет импульсные состав-
ляющие, сосредоточенные в начальный и конечный моменты. Между этими
моментами управление является непрерывной функцией. Построенное управ-
ление является программным. С его помощью можно построить позиционное
управление, которое в случае воздействия возмущений на систему будет по-
рождать импульсно-скользящий режим.

Ключевые слова: вырожденная линейно-квадратичная задача, асимп-
тотически оптимальное управление, импульсные воздействия.
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Введение
Системы, содержащие малый параметр при нелинейных членах в

правой части дифференциальных уравнений, широко используются при
решении различных задач. В теории оптимального управления также
есть немало работ, посвященных задачам управления объектами, опи-
сываемыми квазилинейными дифференциальными уравнениями (см.
например, [1] и библиографию этой книги). Задача оптимизации квад-
ратичного функционала на траекториях квазилинейной системы рас-
сматривалась в [2]. В статье рассмотрим задачу оптимизации вырож-
денного квадратичного функционала на траекториях квазилинейной
системы. Будет показано, что субоптимальным управлением, решаю-
щим эту задачу, будут управления, содержащие импульсные составля-
ющие.

1 Постановка задачи
Рассматривается квазилинейная система дифференциальных урав-

нений
ẋ(t) = A(t)x(t) + µf(x, t) +B(t)v̇(t). (1)

Мы будем минимизировать вырожденный квадратичный функционал

J [u(·)] = 1/2

tf∫
t0

xT (t)Q(t)x(t)dt (2)

вдоль траекторий системы (1). На допустимые траектории системы (1)
будем накладывать граничные условия

x(t0) = x0, xtf = 0. (3)

Здесь решение системы (1) x(t) есть n-мерная функция ограниченной
вариации, управление v(t) — m-мерная вектор-функция ограниченной
вариации (при этом полагаем, что v(t0) = 0), производные в (1) пони-
маются в смысле теории обобщенных функций, µ — малый параметр,
t0 и tf —заданные начальный и конечный моменты времени, f(x, t) —
нелинейная n-мерная вектор-функция, A(t) и Q(t) есть непрерывные
n×n матрицы, при этом Q(t) является симметричной и неотрицательно
определенной. Матрица B(t) является непрерывно дифференцируемой
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n×m-матрицей-функцией. Отметим, что частный случай этой задачи
докладывался на конференции [5].

Как отмечалось выше, задача (1)—(3) в классе измеримых управле-
ний решения не имеет. При µ = 0 задача (1)—(3) рассмотрена в [3, 4].

2 Построение вспомогательной задачи

Далее будем предполагать, что матрица B(t) имеет структуру

B(t) =

(
0̄

B̂(t)

)
,

где B̂(t) — m×m непрерывно дифференцируемая невырожденная мат-
рица, 0̄ — нулевая (n−m)×m матрица. Будем обозначать первые n−m
вектора x через x̄ и последние m координат этого вектора через x̂. Так-
же далее будем предполагать что вектор-функция f(x, t) будет зави-
сеть не от всего вектора x, а только от его первых n − m координат,
т. е.

f(x, t) = f1(x̄, t). (4)

Исходная задача является вырожденной и в классе измеримых функ-
ций решения не имеет. Сделаем в задаче (1), (2), (3) редукцию с помо-
щью замены

y(t) = x(t)−B(t)v(t). (5)

Эта замена применялась при построении расширений задач оптималь-
ного управления, в частности, в [3], [4], [6], [7], [8].

Выполняя замену (5) в задаче (1), (2), (3), получим следующую вспо-
могательную задачу. Требуется минимизировать функционал

J [u(·)] = 1/2

tf∫
t0

[yT (t)Q(t)y(t) + 2vT (t)BT (t)Q(t)y(t)+

+vT (t)B(t)TQ(t)B(t)v(t)]dt (6)

вдоль траекторий системы дифференциальных уравнений

ẏ(t) = A(t)y(t) + µf1(ȳ, t) +B1(t)v(t), (7)

где
B1(t) = A(t)B(t)− Ḃ(t),

а согласно (5) и (4) f(x, t) = f̄(ȳ, t).
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Краевое условие при t = t0 будет иметь вид y(t0) = x0 (v(t0) = 0) и
при t = tf

y(tf ) = −B(tf )v(tf ). (8)

Учитывая структуру матрицы (5) из (8), имеем, что первые n−m ко-
ординат вектора y(tf ) будут нулевыми. Следовательно, не накладывая
никаких ограничений на ŷ(tf ), условие (8) можно всегда обеспечить,
полагая

v(tf ) = −B̄−1(tf )ŷ(tf ). (9)

Таким образом, краевое условие x(tf ) = 0 исходной задачи во вспо-
могательной задаче превращается в условие ỹ(tf ) = 0, а остальные
координаты вектора y(tf ) могут быть произвольными. Для исходной
задачи условие (9) означает, что последние n −m координат вектора
x(tf ) будут зануляться за счет импульса в конечный момент.

Как и в [2], при µ = 0 задача минимизации функционала (6) вдоль
траекторий системы (7) будет называться базовой.

Пусть v0(t), y0(t) — оптимальное управление и оптимальная траек-
тория в базовой задаче (t ∈ [t0, tf ]). Согласно принципу максимума [9]
существует решение сопряженной системы

ψ̇(t) = −AT (t)ψ(t) +Q(t)y0(t) +Q(t)B(t)v0(t),

соответствующее v0(t), y0(t), которое будем обозначать как ψ0(t). Для
этого решения выполняется следующее условие:

ψ0T (t)B1(t)v
0(t)−1

2
v0T (t)B(t)T (t)Q(t)B(t)y0(t)−v0T (t)BT (t)Q(t)B(t)v0(t) =

= max
v∈Rm

(ψ0T (t)B1(t)v(t)−1

2
vT (t)BT (t)Q(t)B(t)y0(t)−vT (t)BT (t)Q(t)B(t)v(t).

Из этого условия в предположении, что detBT (t)Q(t)B(t) 6= 0 ∀t ∈
[t0, tf ], можно найти оптимальное управление в базовой задаче

v0(t) = (BT (t)Q(t)B(t))−1(BT
1 (t)ψ0(t)−BT (t)Q(t)y0(t)). (10)

Пусть p0 = ψ0(t0), тогда y0(t), ψ0(t), t ∈ [t0, tf ] есть решение следую-
щей начальной задачи:

ẏ(t) = (A(t)−M(t)BT (t)Q(t))y(t) +M(t)BT
1 (t)ψ(t), (11)

ψ̇(t) = (Q(t)−N(t)BT (t)Q(t))y(t)− (AT (t)−N(t)BT
1 (t))ψ(t), (12)

где

M(t) = B1(t)(B
T (t)Q(t)B(t))−1, N(t) = Q(t)B(t)(BT (t)Q(t)B(t))−1.(13)
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Обозначим через F (t, s) фундаментальную матрицу этой системы. Эта
матрица будет являться решением такой начальной задачи

Ḟ = Ā(t)F, F (t0) = E2n,

где

Ā(t) =

(
A(t)−M(t)BT (t)Q(t) M(t)BT

1 (t)
Q(t)−N(t)BT (t)Q(t) −(AT (t)−N(t)BT

1 (t))

)
,

F =

(
F11 F12

F21 F22

)
.

Для произвольной матрицы G, содержащей n строк, обозначим через
Ĝ первые n − m строк матрицы G и через Ḡ — последние m строк
матрицы G. В результате матрицу перепишем в виде

F (t, s) =


F̃11(t, s) F̃12(t, s)
F̄11(t, s) F̄12(t, s)

F̃21(t, s) F̃22(t, s)
F̄21(t, s) F̄22(t, s)

 .

С учетом введенных обозначений решение системы (11), (12) можно
записать в виде

ỹ(t)
ȳ(t)

ψ̃(t)
ψ̄(t)

 =


F̃11(t, t0) F̃12(t, t0)
F̄11(t, t0) F̄12(t, t0)

F̃21(t, t0) F̃22(t, t0)
F̄21(t, t0) F̄22(t, t0)




ỹ(t0)
ȳ(t0)
p̃
p̄

 . (14)

Учитывая, что ỹ(tf ) = 0 и ψ̄(tf ) = 0, из (14) следует

(
ỹ(tf )
ψ̄(tf )

)
=

(
F̃11(tf , t0) F̃12(t, t0)
F̄21(tf , t0) F̄22(t, t0)

)
ỹ(t0)
ȳ(t0)
p̃
p̄

 = 0n, (15)

где 0n — нулевой n-мерный вектор. В предположении, что

det

(
F̃12(tf , t0)
F̄22(tf , t0)

)
6= 0,

из (15) мы можем найти начальное условие для сопряженной перемен-
ной

p = −
(
F̃12(tf , t0)
F̄22(tf , t0)

)−1(
F̃11(tf , t0)
F̄21(tf , t0)

)(
ỹ(t0)
ȳ(t0)

)
(16)

в базовой задаче.
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3 Решение вспомогательной задачи

Теперь рассмотрим задачу минимизации функционала (6) на траек-
ториях системы (7). Применим принцип максимума [9] к этой задаче.

H(y, ψ, v, t) = ψT (A(t)y(t) + µf1(ȳ, t) +B1(t)v(t))− 1/2
(
yT (t)Q(t)y(t)+

+2vT (t)BT (t)Q(t)y(t) + vT (t)B(t)TQ(t)B(t)v(t)
)
.

Сопряженная система будет следующей

ψ̇(t) = Q(t)y(t) +Q(t)B(t)v(t)−
(
A(t) + µ

∂f1(ȳ, t)

∂y

)T

ψ(t). (17)

Из условия максимума функции H(y, ψ, v, t) по v получим, что экстре-
мальное управление в этой задаче будет иметь вид (10), т. е. совпадать
с оптимальным управлением в базовой задаче. Этот факт является
следствием того, что функция f1(ȳ, t) не зависит от управления v.

Подставим управление (10) в (6) и (17). Получим систему уравнений

ẏ(t) = (A(t)−M(t)BT (t)Q(t))y(t) + µf1(ȳ, t) +M(t)BT
1 (t)ψ(t), (18)

ψ̇(t) = (Q(t)−N(t)BT (t)Q(t))y(t)

−
(
AT (t) + µ(

∂f1(ȳ, t)

∂y
)T −N(t)BT

1 (t)

)
ψ(t). (19)

Рассмотрим задачу Коши (18), (19) с начальными условиями y(t0) =
x0, ψ(t0) = p. При сделанных выше предположениях найдутся такие ε0
и µ0, при которых задача (18), (19) будет иметь единственное решение
y(t, p, µ), ψ(t, p, µ), t ∈ [t0, tf ] при выполнении условий ‖p− p0‖ < ε0,
|µ| < µ0.

Теорема. При сделанных ранее предположениях относительно за-
дачи (6), (7) при достаточно малых µ существует единственное опти-
мальное управление:

v0(t) = (BT (t)Q(t)B(t))−1
(
BT

1 (t)ψ(t, p(µ), µ)−BT (t)Q(t)y(t, p(µ), µ)
)
,

t ∈ [t0, tf ], yi(tf , p, µ) = 0, i = 1, 2, ..., (n − m), ψj(tt, p, µ) = 0, j =
n−m+ 1, ..., n, p(µ) ∈ C l, p(0) = p0.

Доказательство теоремы аналогично доказательству аналогичного
результата в [2] и поэтому здесь не приводится.

Пользуясь алгоритмом, представленным в статье [2], продолжим из-
ложение построения приближенного решения исходной задачи. Пусть
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задано натуральное число K и K < l. Так как ν(µ) ∈ C l и ν(0) = ν0,
то имеет место равенство p(µ) = p(K)(µ) + o(µK), где

p(K)(µ) = p0 +
K∑
k=1

µkpk

есть полином Тейлора K-й степени. Тогда вектор-функция

v(K)(t, µ) = (BT (t)Q(t)B(t))−1
(
BT

1 (t)ψ(t, p(K)(µ), µ)

−BT (t)Q(t)y(t, p(K)(µ), µ)
)

будет приближенным управлением K-го порядка во вспомогательной
задаче. Далее будем рассматривать процедуру нахождения коэффици-
ентов pk, k = 1, ...,K из разложения (18), изложенную в статье [2].
Согласно алгоритму из [2] следует разложить левую часть уравнений

ỹ(tf , p, µ) = 0, ψ̄(tf , p, µ) = 0 (20)

по степеням малого параметра, применяя классическую технику Пуан-
каре к системе (18), (19). Вектор-функции y(t, p, µ), ψ(t, p, µ) в каждой
точке области определения имеют частные производные по µ до поряд-
ка q включительно. Следовательно, y(t, p, µ) и ψ(t, p, µ) представимы в
виде

y(t, p, µ) =

K∑
k=0

µkyk(t, p) + o(µK),

ψ(t, p, µ) =

K∑
k=0

µkψk(t, p) + o(µK). (21)

Используя метод Пуанкаре, составим дифференциальные уравнения
для yk(t, p) и ψk(t, p), k = 1, ...,K при фиксированном p.

ẏ0(t, p) = (A(t)−M(t)BT (t)Q(t))y0(t, p)+M(t)BT
1 (t)ψ0(t, p), y0(t0, p) = x0,

ψ̇0(t, p) = (Q(t)−N(t)BT (t)Q(t))y0(t, p)

−
(
AT (t)−N(t)BT

1 (t)
)
ψ0(t, p), ψ0(t0, p) = p,

ẏ1(t, p) = (A(t)−M(t)BT (t)Q(t))y1

+f1(ȳ0, t) +M(t)BT
1 (t)ψ1(t, p), y1(t0, p) = 0,

ψ̇1(t, p) = (Q(t)−N(t)BT (t)Q(t))y1(t, p)−
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−
(
AT (t)−N(t)BT

1 (t)
)
ψ1(t, p)− (

∂f1(ȳ, t)

∂y
)Tψ0(t, p), ψ1(t0, p) = 0, (22)

ẏ2(t, p) = (A(t)−M(t)BT (t)Q(t))y2(t, p) +
∂f1(ȳ0, t)

∂y
y1(t, p)+

+M(t)BT
1 (t)ψ2(t, p), , y2(t0, p) = 0,

ψ̇2(t, p) = (Q(t)−N(t)BT (t)Q(t))y2(t, p)−
(
AT (t)−N(t)BT

1 (t)
)
ψ1(t, p)−

−(
∂f1(ȳ0, t)

∂y
)Tψ1(t, p)− ψT

0 (t, p)− (
∂2f1(ȳ0, t)

∂y2
)T y1(t, p), ψ2(t0, t) = 0

и так далее.
Из приведенных выше систем (22) видно, что нахождение коэффи-

циентов в представлениях (21) при заданном p сводится к последова-
тельному решению начальных задач для систем линейных дифферен-
циальных уравнений. В силу (21) левая часть уравнения (20) предста-
вима в виде

R(p, µ) =

K∑
k=1

µkRk(p) + o(µK).

Здесь Rk(p) = yk(tf , p), k = 0, ...,K. Составим системы линейных урав-
нений для векторов pk, k = 1, ...,K. В соответствии с алгоритмом, изло-
женным в [2], применим здесь метод неопределенных коэффициентов.
Разложим в ряд вектор-функцию

∑K
k=1 µ

kRk(pk)(µ)) по степеням µ до
порядка N . Затем приравняем коэффициенты разложения. В результа-
те получим следующие невырожденные системы линейных уравнений
для последовательного нахождения векторов νk, k = 1, ..., N :

F12(t0, tf )p1 = −R1(p0), F12(t0, tf )p2 = −R2(p0)−
∂R1

∂p
(p0)p1, ... (23)

Для построения правых частей этих систем необходимо знать значения
функций yk(t, p) и их частных производных по компонентам вектора p
в точке (t0, p0). Искомые значения получаются в результате интегриро-
вания уравнений (22). Начальные задачи для производных получаем в
результате дифференцирования этих же уравнений. Приведем пример
для производной функции y0(t, p) :

d

dt

∂y0
∂p

= A(t)
∂y0
∂p

+B1(t)P
−1(t)B2(t)

∂ψ0

∂p
,
∂y0
∂p

(t0) = 0,

d

dt

∂ψ0

∂p
= Q(t)

∂y0
∂p

+ [Q(t)B(t)P−1(t)B2(t)−AT (t)]
∂ψ0

∂p
,

∂ψ0

∂p
(t0) = En.
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При вычислении правых частей систем (22) должны выполняться ра-
венства y0(t, ν0) = y0(t), ψ0(t, ν0) = ψ0(t), t ∈ [t0, tf ]. Тогда R1(ν0) =
y0(tf ), а вектор-функции y01(t), ψ0

1(t) являются решениями задачи:

ẏ1(t) = A(t)y1(t) + f̃1(ψ0(t), y0(t), t) +B1(t)P
−1(t)B2(t)ψ1(t), y1(t0) = 0,

ψ̇1(t) = Q(t)y1(t) + [Q(t)B(t)P−1(t)B2(t)−AT (t)]ψ1(t)−

−∂h
∂y

(ψ0(t), y0(t), t), ψ1(t0) = 0.

В результате последовательного решения системы (22) находим pk, k =
1, ..., N и строим полином p(N)(µ). Управление vN (t, µ) является при-
ближенным управлением N -го порядка во вспомогательной задаче. Те-
перь необходимо решить задачу при p = p(N)(µ). Тогда

ψ(t, ν(N)(µ), µ) = ψ
(N)

(t, µ) + o(µN ),

где

ψ
(N)

(t, µ) =
N∑
k=0

µkψk(t), t ∈ [t0, tf ].

Величины ψk(t) определяются путем последовательного решения задач
Коши, отличающихся от (22) только начальными условиями для ψk :
ψk(t0) = νk, k = 0, ..., N . Управление

v(N)(t, µ) = P−1(t)B2(t)ψ
(N)

(t, µ), t ∈ [t0, tf ] (24)

вместе с v(N)(t, µ) является приближенным управлением N -го порядка
во вспомогательной задаче. Так как ψ

(0)
(t, µ) = ψ0(t), t ∈ [t0, tf ], то

v(0)(t, µ) = v0(t) является решением базовой задачи и приближенным
управлением нулевого порядка во вспомогательной задаче. Аппрокси-
мация управления первого порядка представимо в виде:

v(1)(t, µ) = P−1(t)B2(t)(ψ
0(t) + µ(ψ0

1(t) + F22(t, t0)ν1)), t ∈ [t0, tf ].

Коэффициенты полиномов, с помощью которых строятся прибли-
женные управления, зависят от начального состояния исходной систе-
мы. При построении приближенных управлений нулевого и первого
порядка эта зависимость будет учтена. Далее будем считать, что вы-
полнено условие detF12(tf , t0) 6= 0 при всех t0 < tf . Момент tf будем
считать также заданным. Из формулы (16) следует, что

p0(y0, t0) = −F−112 (tf , t0)F11(tf , t0)y0.
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Согласно (24) имеем

v(0)(t, y0, t0)) = P−1(t)B2(t)ψ
(0)

(t, y0, t0), t ∈ [t0, tf ].

А так как ψ(0)
(t0, y0, t0) = p0(y0, t0), то

u(0)(t0, y0, t0)) = P−1(t)B2(t)ν0(y0, t0).

Поскольку (y0, t0) — произвольное начальное состояние, то вектор-
функция

v̄(0)(y, t) = −P−1(t)B2(t)F
−1
12 (tf , t)F11(tf , t)y

представляет собой оптимальное управление типа обратной связи в ба-
зовой задаче. Для всех t < tf справедливо равенство F (tf , t) = G(t),
где матрица

G(t) =

(
G11(t) G12(t)
G21(t) G22(t)

)
является решением краевой задачи

Ġ = −GĀ(t), G(tf ) = E2n.

Поэтому асимптотически субоптимальная обратная связь нулевого по-
рядка может быть записана в виде

v̄(0)(y, t) = −P−1(t)B2(t)G
−1
12 (t)G11(t)y.

Асимптотически субоптимальная обратная связь первого порядка пред-
ставима в следующей форме:

v(1)(y, t) = −P−1(t)B2(t)G
−1
12 (t)R1(y, t),

где

R1(y, t) = y1(tf , y, t) =

∫ tf

t
(G11(τ)f̃(u,C1(τ, t)y, τ)−

−G12(τ)
∂h

∂y
(C1(τ, t)y, C2(τ, t)y, τ)) dτ,

C1(t, t0) = F11(t, t0)− F12(t, t0)G
−1
12 (t0)G11(t0),

C2(t, t0) = F21(t, t0)− F22(t, t0)G
−1
12 (t0)G11(t0).

Последовательно будет построено субоптимальное управление вспомо-
гательной задачи v(N)(y(t), t).
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4 Субоптимальное управление в исходной задаче
Для построения субоптимального решения исходной задачи нужно

продифференцировать полученное решение вспомогательной задачи в
смысле теории обобщенных функций. Учитывая, что v(N)(y(t), t) = 0
при t < t0, дифференцируя функцию v(N)(y(t), t), получим субопти-
мальное управление для исходной задачи. Оно будет иметь вид

v̇N (t) = ∆t0vN (t0, x(t0), µ)δ(t−t0)+v̇
(r)
N (t, µ)+∆tf vN (tf , x(tf ), µ)δ(t−tf ),

(25)
где δ(t) — дельта-функция Дирака.

В (25) первое слагаемое ∆t0vN (t0, x(t0), µ) определяет интенсивность
импульсного воздействия, реализуемого в начальный момент, которое
обеспечивает начальный скачок траектории. Слагаемое v̇(r)N (t, µ) явля-
ется непрерывной функцией и осуществляет управление системой на
интервале (t0, tf ). В конечный момент управление с помощью импульса
сделает нулевыми последние n−m координат фазового вектора.

Управление (25) является программным. Переход к позиционному
алгоритму управления приведет к появлению импульсно-скользящих
режимов [10].

Заключение
В работе предложена рекуррентная процедура построения субоп-

тимального управления. Особенность задачи состоит в том, что ис-
комое управление имеет импульсные составляющие. Сначала строится
вспомогательная задача, решение которой существует в классе кусочно
непрерывных управлений. С помощью решения вспомогательной зада-
чи строится субоптимальное решение исходной задачи.
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Abstract. This paper considers the problem of minimizing a degenerate
quadratic functional on the trajectories of a quasilinear control system. A
distinctive feature of the problem is that its solution exists in the space of
generalized functions. An auxiliary problem is constructed for the original
problem. Its solution exists in the space of absolutely continuous functions.
Parameter expansion methods and L.S. Pontryagin’s maximum principle
are applied to solve it. A finite number of iterations results in construct-
ing a suboptimal control for the auxiliary problem. Using this control, a
suboptimal control for the original problem is constructed. This control
has impulse components concentrated at the initial and final moments. Be-
tween these instants, the control is a continuous function. The constructed
control is a program control. It can be used to construct a positional con-
trol that, when subject to disturbances, will generate a impulse-sliding
mode.

Keywords: degenerate linear-quadratic problem; asymptotically opti-
mal control; impulse actions.
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