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Аннотация. В работе рассматривается задача наилучшего распределе-
ния пациентов между медицинскими учреждениями с учетом их вместимо-
сти. Негладкая целевая функция этой задачи представляет собой максималь-
ную нагрузку среди всех медучреждений, которую требуется минимизиро-
вать. Для поиска решения доказываются достаточные условия оптимально-
сти, базирующиеся на свойстве неубывания целевой функции. На этой основе
построен новый метод потенциальных значений прямого-обратного хода, поз-
воляющий находить решения, которые удовлетворяют достаточным условиям
оптимальности. С целью тестирования разработанного метода проведен вы-
числительный эксперимент на тестовых задачах, моделирующих эпидемии в
крупных городах. Результаты эксперимента показывают, что данный метод
успешно находит решения поставленных задач за меньшее время, чем ранее
разработанный метод потенциальных значений прямого хода и оказывается
эффективнее программных пакетов, использующих традиционные подходы
глобальной оптимальности.
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Введение
Сегодня население Земли составляет свыше 8 миллиардов человек.

С ростом численности населения значительно увеличивается масштаб
эпидемий и пандемий вирусных инфекций. Яркий пример — панде-
мия, вызванная вирусом SARS-CoV-2 в 2020–2021 гг., после которой
особенно актуальными стали задачи эпидемического моделирования
[2, 5, 6]. Однако оптимальное управление эпидемиями [8, 12] невоз-
можно без учета характеристик медицинских учреждений, таких как
вместимость, численность медицинского персонала и скорость оказа-
ния медицинских услуг пациентам (производственная мощность) [11].

В подобных условиях естественным образом возникает задача опти-
мального распределения пациентов между медицинскими учреждения-
ми таким образом, чтобы минимизировать максимальное время загруз-
ки поликлиник и больниц. Традиционные методы решения подобных
задач, основанные на решении релаксированной непрерывной линей-
ной оптимизационной задачи с последующим применением метода типа
ветвей и границ, зачастую оказываются неэффективными для крупных
систем, поскольку страдают от так называемого «проклятия размер-
ности» [3].

В статье рассматривается задача распределения m пациентов меж-
ду n учреждениями, каждое из которых характеризуется собственной
производственной мощностью и вместимостью. Целевая функция ис-
следуется на минимум и представляет собой максимум всех нагрузок
на учреждения, определяемых линейными функциями при линейных
ограничениях. Несмотря на то, что математически задача является
негладкой и невыпуклой (с дискретными переменными), с использова-
нием ее специфики удается доказать достаточные условия оптималь-
ности, которые используются при построении оригинального метода
решения этой задачи, так называемого метода потенциальных значе-
ний.

Статья организована следующим образом. Первый раздел посвя-
щен исследуемой задаче. В нем представлена математическая поста-
новка эпидемической задачи распределения пациентов, введены основ-
ные обозначения. Здесь же доказаны достаточные условия оптимально-
сти и предложен подход к построению решения задачи распределения,
являющийся основой метода потенциальных значений. Во втором раз-
деле по шагам описана схема метода потенциальных значений прямого-
обратного хода и проведена оценка сложности его реализации. В сле-
дующем разделе приводятся результаты численных экспериментов, в
которых предлагаемый метод сравнивается с ранее разработанным ме-
тодом потенциальных значений прямого хода, а также с существую-
щими подходами по поиску решения в целочисленных задачах линей-
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ной оптимизации, реализованными в известных программных пакетах.
В заключение подводятся итоги работы: оценивается новизна предло-
женного подхода, обсуждаются его теоретическая и практическая зна-
чимость.

1 Постановка эпидемической задачи распределения
и ее свойства

Рассмотрим задачу наилучшего распределения нагрузки между ме-
дицинскими учреждениями в условиях ограниченных ресурсов. Пусть
в городе функционирует n медицинских учреждений, каждое из ко-
торых обладает определенной производственной мощностью и вмести-
мостью. Требуется распределить m пациентов таким образом, чтобы
нагрузка на учреждения была сбалансирована, а общая длительность
процесса лечения была минимальной.

Обозначим через xi количество пациентов, направленных в учре-
ждение i ∈ I = {1, 2, . . . , n}, πi ∈ N — производительность (мощность)
этого учреждения, то есть количество пациентов, которое оно способно
принять за единицу времени, а ci — его вместимость, то есть макси-
мально допустимое число пациентов для учреждения i.

Сформулируем задачу минимизации целевой функции, которая ха-
рактеризует максимальную из всех нагрузок учреждений:

(P) : fm(x) = max

{
x1
π1

;
x2
π2

; . . . ;
xn
πn

}
↓ min

x
, x ∈ Xm, (1)

где

Xm =

{
x = (x1, x2, . . . , xn)T ∈ Zn≥0 : xi ≤ ci,

n∑
i=1

xi = m, i ∈ I

}
. (2)

Здесь Xm — невыпуклое допустимое множество задачи (P), посколь-
ку оно является подмножеством Zn≥0 — множества n-мерных векторов с
целыми неотрицательными компонентами, xi ≤ ci — естественное огра-

ничение на вместимость каждого учреждения, а
n∑
i=1

xi = m — отвечает

за то, что должны быть распределены ровно m пациентов.
Задача (P) относится к классу негладких целочисленных оптимиза-

ционных задач. Один из традиционных подходов [4, 7, 13] к решению
подобных задач заключается в решении релаксированной непрерывной
задачи линейной оптимизации:

(PL) : fm(t, x) = t ↓ min
t,x
, x ∈ X, t ∈ T, (3)

X =

{
x ∈ Rn : 0 ≤ xi ≤ ci,

n∑
i=1

xi = m

}
, T =

{
t ≥ xi

πi

}
, (4)
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которая решается стандартными методами линейного программиро-
вания (например, симплекс-методом). Затем компоненты полученного
непрерывного решения округляются до целых значений и применяются
методы типа ветвей и границ с целью получить лучшее распределение,
чем текущее.

Однако задача (P) обладает рядом структурных свойств, позволя-
ющих предложить более эффективный метод поиска решения по срав-
нению с изложенным выше традиционным подходом. В частности, в
следующей лемме устанавливается важное свойство целевой функции
задачи (P).

Лемма 1. В задаче (P) функция fm(x) является неубывающей при
увеличении компонент вектора x.

Доказательство. Каждая линейная функция
xi
πi

является неубываю-

щей по xi. Поскольку операция взятия максимума сохраняет данное

свойство [1], то и функция fm(x) = max

{
x1
π1

;
x2
π2

; . . . ;
xn
πn

}
также явля-

ется неубывающей по каждой компоненте xi.

Теперь покажем, что в задаче (P) всегда можно найти вектор, в
котором уменьшение одной компоненты и увеличение другой на 1 не
приводит к строгому уменьшению значения целевой функции.

Теорема 1. Если в задаче (P) допустимое множество Xm 6= ∅, а
значение задачи V(P) , inf {fm(x) | x ∈ Xm} > −∞ конечно. Тогда
существует вектор x∗ ∈ Xm такой, что:

x∗j
πj
≤ x∗i + 1

πi
∀i ∈ I : xi + 1 ≤ ci, (5)

где j = arg max
i∈I

{
x∗i
π∗i

}
, I = {1, 2, . . . , n}.

Доказательство. Предположим противное. Пусть Xm 6= ∅ и
∀ x ∈ Xm, найдется индекс k ∈ I такой, что

(a) : xk + 1 ≤ ck, (6)

(b) :
xk + 1

πk
<
xj
πj
. (7)

где j = arg max
i∈I

{
xi
πi

}
. Поскольку Xm 6= ∅, то и множество решений

Sol(P) 6= ∅. Кроме того, очевидно, что Sol(P) ⊂ Xm. Значит, суще-
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ствует x ∈ Sol(P) такой, что

(a) : xk + 1 ≤ ck, (6′)

(b) :
xk + 1

πk
<
xj
πj
. (7′)

где j = arg max
i∈I

{
xi
πi

}
. Заметим, что xj ≥ 1, поскольку в случае xj = 0

нарушается условие (7′). Тогда построим вектор

x̃ =


x̃i = xi, i 6= j и i 6= k,

x̃j = xj − 1,

x̃k = xk + 1.

(8)

Из (6′) и из того, что xj ≥ 1, следует, что x̃ ∈ Xm. Кроме того, из (7′)
и (8) получаем

x̃i
πi
≤ xj
πj

∀i ∈ I. (9)

В силу способа построения вектора x̃ для индексов k и j неравен-

ство (9′) выполняется строго, поэтому j 6= arg max
i∈I

{
x̃i
πi

}
. Более того,

с учетом леммы 1 получаем, что fm(x̃) ≤ fm(x). Из чего следует, что
вектор x̃ ∈ Sol(P) и для него также справедливы неравенства (6′) и
(7′) с новыми индексами j и k, для которого также можно построить
новый вектор по формуле (8). Повторив такое построение не более чем
n− 1 раз, получим

x̃i
πi
<
xj
πj

∀i ∈ I. (9′)

Следовательно, fm(x̃) < fm(x). Получили противоречие с тем, что
x ∈ Sol(P). Теорема доказана.

Теперь можно доказать достаточные условия оптимальности в за-
даче (P).

Теорема 2. Если условия теоремы 1 выполнены, а вектор x∗ удовле-
творяет неравенству (5), то x∗ является решением задачи (P).

Доказательство. Поскольку ∀x ∈ Xm (x 6= x∗) выполняется ограни-

чение
n∑
i=1

xi = m, то существует индекс l ∈ I такой, что:

xl + 1 ≤ cl и x∗l + 1 ≤ xl. (10)
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Тогда в силу (5) и леммы 1 получаем, что

fm(x∗) ≤ fm(x) ∀x ∈ Xm. (11)

Нетрудно видеть, что формула (11) представляет собой определение
решения задачи (P). Теорема доказана.

Замечание 1. Неравенство (5) является достаточным, но не необ-
ходимым условием оптимальности в задаче (P) (см. следующий при-
мер).

Пример 1.

f4(x) = max
{x1

3
;
x2
3

;
xn
2

}
↓ min

x
, x ∈ X4, (12)

где

X4 =

{
x = (x1, x2, x3)

T ∈ Z3
≥0 : xi ≤ 2,

3∑
i=1

xi = 4, i ∈ I

}
. (13)

Для данной задачи можно найти вектор x∗, удовлетворяющий нера-

венству (5). Например, x∗ = (2, 1, 1)T , f(x∗) =
2

3
, который является

одним из решений задачи (12)–(13). Также решением в этой задаче яв-

ляется и вектор x = (2, 2, 0)T , f(x) =
2

3
, однако для него неравенство

(5) нарушается (при (j, k) = (1, 3) или (j, k) = (2, 3)). �
Идея метода потенциальных значений базируется на формуле (8)

и неравенстве (9). Как можно видеть, каждый новый вектор, постро-
енный по правилу (8), оказывается не хуже (с точки зрения целевой
функции) предшествующего допустимого вектора, а на определенных
шагах строго лучше (см. неравенство (9′)). Таким образом, из любого
допустимого вектора за конечное число шагов можно получить вектор,
удовлетворяющий условию (5), который согласно теореме 1 является
решением задачи (P).

2 Метод потенциальных значений

В предыдущем разделе было показано, что в любой задаче (1)–(2) с
непустым допустимым множествомXm существует решение x∗, удовле-
творяющее (5). Для поиска таких решений ранее был разработан так
называемый метод потенциальных значений прямого хода [9]. Однако
данный метод требует особых стартовых векторов для его примене-
ния. Ниже предложена новая схема метода потенциальных значений
прямого-обратного хода, которая данным недостатком не обладает.
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Основной идеей метода является последовательное уменьшение тех
компонент вектора x, которые приводят к наибольшим значениям под
знаком максимума в целевой функции, и увеличение компонент век-
тора x, которые приводят к минимальному увеличению значений под
знаком максимума. Для реализации этой идеи введем вспомогательный
объект (функцию потенциальных значений):

p(x) , (p1, p2, . . . , pm) :=

(
x1 + 1

π1
,
x2 + 1

π2
, . . . ,

xn + 1

πn

)
, (14)

где x ∈ Zn≥0.
Шаг 0. Пусть x0 ∈ Rn — некоторый стартовый вектор, тогда

x1 =


x1i = 0, если x0i < 0,

x1i =
[
x0i
]
, если 0 ≤ x0i ≤ ci,

x1i = [ci] , если x0i > ci.

(15)

Положить s := 1, xs := x1, p(xs) :=

(
x11 + 1

π1
,
x12 + 1

π2
, . . . ,

x1n + 1

πn

)
,

σ :=
n∑
i=1

x1i .

Шаг 1. Если σ < m перейти к шагу 2, иначе перейти к шагу 3.
Шаг 2. Найти k = arg min

i∈I
{pi}, где xi + 1 ≤ ci, положить:

xs+1 =

{
xs+1
i := xsi , i 6= k,

xs+1
k := xsk + 1;

ps+1 =

{
ps+1
i := psi , i 6= k,

ps+1
k := psk + 1

πk
;

(16)

s := s+ 1 и вернуться на шаг 1.

Шаг 3. Найти j = arg max
i∈I

{
xsi
πi

}
. Если j = k, то STOP. Иначе

xs+1 =

{
xs+1
i := xsi , i 6= j,

xs+1
j := xsj − 1;

ps+1 =

{
ps+1
i := psi , i 6= j,

ps+1
j := psj + 1

πj
;

(17)

s := s+ 1 и вернуться на шаг 1. �
Нетрудно видеть, что метод потенциальных значений является до-

вольно простым в реализации, поскольку все операции выполняют-
ся быстро и не требуют решения каких-либо вспомогательных задач.
Шаг 2 будем называть прямым шагом метода потенциальных значе-
ний (число распределенных пациентов увеличивается на 1), а шаг 3
обратным (число распределенных пациентов уменьшается на 1).
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Формулы (16) и (17) описывают один из способов построения векто-
ра x̃ из формулы (8) (см. док-во теоремы 1). Индекс k в данном случае
выбирается таким образом, чтобы приращение значений под знаком
максимума в целевой функции было наименьшим, так как исходная
задача исследуется на минимум. Поскольку V(P) конечно, то убыва-
ющая последовательность значений целевых функций, генерируемая
методом, ограничена снизу. Кроме того, не менее чем через каждые
n−1 шагов происходит строгое улучшение целевой функции (см. (9′)).
Из этого можно сделать вывод, что метод не имеет внутренних цик-
лов и находит решение за конечное число шагов, что подтверждается
результатами тестирования.

Ранее разработанный метод потенциальных значений прямого хо-
да не включал шаг 3 и потому находил решение задачи (P) только
при определенных стартовых векторах, например, начиная с нулевого
вектора x0 = (0, 0, . . . , 0)T .

3 Результаты расчетов
Тестирование предложенного метода потенциальных значений пря-

мого-обратного хода проводилось на серии случайно сгенерированных
тестовых задач, моделирующих распространение эпидемии в крупном
городе. Диапазоны случайных параметров (табл. 1) определялись на
основе данных о системе медицинских учреждений г. Иркутска.

Таблица 1. Параметры численного тестирования
Параметр Диапазон значений

m [105 000; 390 000]

n [7; 26]

πi [80; 480]

ci [2 500; 12 000]

По данным Росстата, численность населения города Иркутска на 1
января 2025 г. составила 605 708 человек. В городе функционирует во-
семь инфекционных больниц, что в среднем соответствует примерно 75
тыс. жителей на одно медицинское учреждение. В рамках моделиро-
вания предполагалось, что в каждом учреждении работает случайное
количество врачей в диапазоне от 5 до 10, при этом каждый врач в
среднем принимает случайное число пациентов (от 16 до 48 человек)
при стандартной продолжительности рабочего дня 8 часов. Количе-
ство пациентов, направляемых на лечение, принималось равным от 17
до 65% общей численности населения. Диапазон вместимости для каж-
дого медицинского учреждения составлял от 0,5 до 3% общей численно-
сти населения. Также предполагалось, что в период крупной эпидемии
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могут быть задействованы дополнительные ресурсы учреждений дру-
гого профиля, поэтому было сгенерировано по 50 задач для каждого
целого n ∈ [7, 26].

Метод потенциальных значений прямого-обратного хода (PVM-FB)
сравнивался с методом потенциальных значений прямого хода (PVM ),
а также с результатами работы пакетов программ, применяемых для
решения целочисленных линейных задач оптимизации с использовани-
ем метода типа ветвей и границ (GLPK и OR-Tools). Эти пакеты были
выбраны для сравнения как наиболее эффективные среди бесплатных
доступных пакетов.

Таблица 2. Сравнение методов по качеству решения (количество баллов)
n Число задач PVM-FB PVM GLPK OR-Tools
7 50 50 50 49 4
8 50 50 50 50 0
9 50 50 50 50 0
10 50 50 50 50 0
11 50 50 50 50 0
12 50 50 50 50 0
13 50 50 50 49 0
14 50 50 50 50 0
15 50 50 50 50 0
16 50 50 50 50 0
17 50 50 50 50 0
18 50 50 50 49 0
19 50 50 50 50 0
20 50 50 50 49 0
21 50 50 50 50 0
22 50 50 50 49 0
23 50 50 50 50 0
24 50 50 50 50 0
25 50 50 50 48 0
26 50 50 50 50 0

В таблице 2 приведены результаты тестирования, в которых методы
сравнивались по качеству полученного решения. Будем обозначать как
fPVM-FB, fPVM, fGLPK, fOR-Tools — значения целевых функций, вычис-
ленных для решений, полученных каждым из методов (PVM-FB, PVM,
GLPK, OR-Tools). В случае если значение целевой функции одного из
методов было минимальным среди всех значений, полученных други-
ми подходами для данной задачи, то данный метод получал 1 балл, то
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есть если выполнено неравенство

fMethod ≤ f∗, (18)

где f∗ = min
{
fPVM-FB, fPVM, fGLPK, fOR-Tools

}
.

Баллы, представленные в таблице 2, демонстрируют, что предло-
женный метод потенциальных значений прямого-обратного хода во всех
случаях обеспечивает решения не хуже по качеству, чем метод потенци-
альных значений прямого хода. Пакет GLPK справился почти со всеми
задачами, однако в 7 задачах (отмечено в таблице 2 жирным шриф-
том) показал результат хуже чем оба метода потенциальных значений.
При этом пакет OR-Tools смог найти решение только в 4 задачах из
1 000.

Таблица 3. Сравнение методов по среднему времени поиска решения
PVM-FB PVM GLPK OR-Tools
0,000728 с 0,001705 с 0,005716 с 0.027375 с

Затем было проведено сравнение по среднему времени поиска ре-
шения для всех методов (табл. 3) на всем наборе из 1 000 задач. Как
можно видеть, метод потенциальных значений прямого-обратного хода
находит решения в среднем более чем в два раза быстрее по сравне-
нию с методом потенциальных значений прямого хода и почти в десять
раз быстрее, чем пакет GLPK. Скорость работы OR-Tools в сочетании
с неудовлетворительным качеством найденных решений не позволяет
использовать данный пакет для решения задач распределения нагруз-
ки между медицинскими учреждениями.

Заключение

В настоящей работе была исследована задача наилучшего распреде-
ления нагрузки между медицинскими учреждениями с ограничениями.
Для данной задачи доказаны достаточные условия оптимальности, а
также продемонстрировано, что найдется как минимум одно решение,
удовлетворяющее этим условиям. Построена схема решения задачи с
использованием достаточных условий оптимальности.

Наконец, был проведен вычислительный эксперимент, продемонстри-
ровавший высокую эффективность разработанного алгоритма на тес-
товых задачах распределения эпидемической нагрузки в крупном го-
роде. Эксперимент показал, что новый метод потенциальных значений
успешно находит решение в эпидемической задаче распредения, при
этом тратя на поиск существенно меньше времени, чем методы, осно-
ванные на традиционных способах решения.
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Полученные результаты позволяют предположить, что разработан-
ный метод может быть обобщен на задачи наилучшего распределения
с любыми неубывающими функциями. Дальнейшее тестирование ме-
тодики будет продолжено в этом направлении.
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Abstract. This work addresses the problem of optimal allocation of pa-
tients among medical facilities, taking into account their capacities. The
nonsmooth objective function represents the maximum load across all fa-
cilities, which needs to be minimized. Sufficient conditions for optimality,
based on the non-decreasing property of the objective function, are derived
to obtain the solution. Building on this, a new forward–backward poten-
tial values method is proposed, which allow to find the vector, that satisfy
the sufficient optimality conditions. To evaluate the method, computa-
tional experiments were conducted on test problems simulating epidemics
in large cities. The results demonstrate that the proposed approach suc-
cessfully finds solutions in less time than the previously developed forward
potential values method and outperforms software packages that including
traditional global optimization techniques.

Keywords: mathematical modeling, min-max optimization, discrete op-
timization, branch-and-bound method, sufficient optimality conditions, po-
tential values method, epidemic test problems, numerical experiment.

For citation
Kosyanov N. O. The Potential Values Method for an Epidemic Prob-

lem of Allocation // Bulletin of Buryat State University. Mathematics,
Informatics. 2025. N. 4. P. 53–64.

The article was submitted 05.11.2025; approved after reviewing 21.11.2025;
accepted for publication 26.11.2025.

64


