BSU bulletin
Mathematics, Informatics
LoginРУСENG

BSU bulletin. Mathematics, Informatics

Bibliographic description:
Buldaev A. S.
,
Khishektueva I. D.
,
Anakhin V. D.
,
Dambaev Z. G.
ON ONE METHOD FOR SOLVING THE PROBLEM OF IDENTIFYING DYNAMIC SYSTEMS // BSU bulletin. Mathematics, Informatics. - 2020. №4. . - С. 14-25.
Title:
ON ONE METHOD FOR SOLVING THE PROBLEM OF IDENTIFYING DYNAMIC SYSTEMS
Financing:
Работа выполнена при финансовой поддержке РФФИ, проект 18-41-030005-р_а.
Codes:
DOI: 10.18101/2304-5728-2020-4-14-25UDK: 517.977
Annotation:
To solve the problem of identifying dynamic systems, the theory and
methods of optimal control are applied. The article deals with a new approach to solving the problem based on representing the conditions for improving control in the form
of special problems on a fixed point of control operators. This representation makes it
possible to apply and modify the theory and methods of fixed points for constructing
relaxation control sequences in the optimization problems of the class under consideration. We have proposed an algorithm for the approximate solution of the identification
problem based on iterative methods for finding fixed points. The considered algorithm
is characterized by the properties of control non-local improvement and the fundamental possibility of strictly improving non-optimal controls that satisfy the known necessary optimality conditions, in contrast to gradient and other local methods. The effectiveness of the proposed optimization methods has been illustrated by calculating a model problem
Keywords:
parametric optimization; control improvement conditions; the fixed point problem; optimization method.
List of references:
1. Gabasov S. S., Kirillova F.M. Kachestvennaya teoriya optimalnykh protsessov [Qualitative Theory of Optimal Processes]. Moscow: Nauka Publ., 1971. 508 p.

2. Ashchepkov L. T. Novoselsky A. V., Tyatyushkin A. I. Identifikatsiya dinamicheskikh sistem kak zadacha upravleniya parametrami [Identification of Dynamic Systems as a Control Problem of Parameters]. Automation and Remote Control. 1975. Vol. 36, no. 3. Pp. 178–182.

3. Buldaev A. S., Khishektueva I.-Kh. D. Metod nepodvizhnykh tochek v zadachakh parametricheskoi optimizatsii sistem [Fixed Point Method in Parametric Optimization Problems for Systems]. Automation and Remote Control. 2013. Vol. 74, no. 12. Pp. 1927–1934.

4. Buldaev A. S. Metody nepodvizhnykh tochek na osnove operatsii proektirovaniya v zadachakh optimizatsii upravlyayushchikh funktsii i parametrov dinamicheskikh system [Fixed-Point Methods Based on Projection in Optimization Problems of Control Functions and Parameters of Dynamic Systems]. Vestnik Buryatskogo gosuniversiteta. Matematika, informatika. 2017. No. 1. Pp. 38–54. DOI:10.18101/2304-5728-2017-1-38-54.

5. Srochko V. A. Iteratsionnye metody resheniya zadach optimalnogo upravleniya [Iterative Methods for Solving Optimal Control Problems]. Moscow: Fizmatlit Publ., 2000. 160 p.

6. Buldaev A. S. Metody vozmushchenii v zadachakh uluchsheniya i optimizatsii upravlyaemykh system [Perturbation Methods in Problems of Improving and Optimizing Controlled Systems]. Ulan-Ude: Buryat State Univ. Publ., 2008. 260 p.

7. Samarsky A. A., Gulin A. V. Chislennye metody [Numerical Methods]. Moscow: Nauka Publ., 1989. 432 p.