BSU bulletin
Mathematics, Informatics

BSU bulletin. Mathematics, Informatics

Bibliographic description:
Bokhoeva L. A.
Bochektueva E. B.
MODELING AND CALCULATION OF THE STABILITY OF THIN LAYERS IN A SPHERICAL SHELL // BSU bulletin. Mathematics, Informatics. - 2018. №2. . - С. 77-84.
Работа выполнена при поддержке госзадания Минобрнауки РФ, проект

№9.7667.2017/БЧ, проект № 9.11221.2018/11.12
DOI: 10.18101/2304-5728-2018-2-77-84UDK: 539.3
At present, structural elements made of layered composite materials are widely used, especially in aircraft industry. Composite materials (CM) are characterized by high values of rigidity and strength, they are easily processed and operated in a wide range of temperatures, these makes them materials with almost limitless pos- sibilities. The use of multilayer CM requires taking into account the anisotropy of mechanical characteristics and the possibility that hidden defects may exist on the interfaces of individual layers. Layer separation is a widespread type of defect, and quite often it becomes a determining factor in the possibility of using CM. The arti- cle first solves the problem of stability of thin layers located near the inner surface of a compressed spherical shell made of layered composite materials. We have pre- sented the energy method for solving the stability of thin layers located near the in- ternal surface, and carried out a computer simulation of the multi-layer shell in ANSYS system and calculation of the supercritical deformations of a spherical shell in layer separation zone.
interlayer defects; detachment; energy method; composite materials; cri- teria; thin-walled elements of structures; model; finite elements method.
List of references:
Bolotin V. V. Razrushenie kompozitsionnykh materialov po tipu otsloenii [Destruction of Composite Materials in the Form of Layers]. Raschety na prochnost' — Calculations for Strength. 1986. V. 27. Pp. 8–20.

Bugakov I. I. Rabota razrusheniya sloistykh stekloplastikov po poverkhnosti razdela [Work of Destruction of Laminated Fiberglass over the Interface]. Problemy prochnosti — Problems of Strength. 1978. No. 4. Pp. 4–8.

Vorontsov A. N., Murzakhanov G. Kh., Shchugorev V. N. Razrushenie kon- struktsii iz kompozitnykh materialov po tipu rassloenii [Destruction of Structures of Composite Materials in the Form of Layering]. Mekhanika kompozitnykh materialov — Mechanics of Composite Materials. 1989. No. 6. Pp. 1007–1023.

Chai H., Babcock C. D. Two-Dimensional Modeling of Compressive Failure in Delaminated Laminates. Inter. Journal of Composite Materials. 1985. V. 19, No. 1. Pp. 67–91.

Bottega W. J., Maewal A. Delamination Buckling and Growth in Lamination.

Journal Applied Mechanics. 1983. V. 50. No. 1. Pp. 184–189.

Bokhoeva L. A. Osobennosti rascheta na prochnost' elementov konstruktsii iz izotropnykh i kompozitsionnykh materialov s dopustimymi defektami [Peculiarities of Calculating the Strength of Structural Elements of Isotropic and Composite Materials with Permissible Defects]. Ulan-Ude: East-Siberian State Technical University Publ., 2007. 192 p.

Bochektueva E. B., Bokhoeva L. A. Matematicheskoe modelirovanie formiro- vaniya struktury pri termoobrabotke v elementakh konstruktsii [Mathematical Model- ing of Structure Formation during Heat Treatment in Elements of Construction]. Vest- nik Buryatskogo gosudarstvennogo universiteta. Khimiya. Fizika — Bulletin of Buryat State University. Chemistry. Physics. 2016. No. 4. Pp. 52–56.