BSU bulletin
Mathematics, Informatics
LoginРУСENG

BSU bulletin. Mathematics, Informatics

Bibliographic description:
Buldaev A. S.
,
Mizhidon K. A.
The problem of construction control for linear dynamical system according to reference law of motion // BSU bulletin. Mathematics, Informatics. - 2016. №1. . - С. 16-26.
Title:
The problem of construction control for linear dynamical system according to reference law of motion
Financing:
Codes:
DOI: 10.18101/2304-5728-2016-1-16-26UDK: 517.97
Annotation:
The article deals with the problem of optimal control for linear dynamical system with an integral quality criterion characterizing law of motion deviation from some reference law. We proposed an approach to solution of the problem based on mathematical programming with control constancy on the first inter- val and with simultaneous detection of control switching point; and showed the ways to find the subsequent switching points. The theoretical justification of the proposed approach was presented.
Keywords:
optimal control, reference law of motion, integral quality crite- rion.
List of references:
1. Mizhidon A. D., Eltoshkina E. V., Imykhelova M. B. Tipovye zadachi avtomatizatsii proektirovaniya vibrozashchitnykh sistem i ikh algoritmicheskoe obespechenie [Typical Automation Problems of Vibration Isolation Systems Design and Their Algorithmic Support]. Vestnik VSGUTU – Bulletin of ESSUTM. 2012. No. 4 (39). Pp. 6–12.

2. Mizhidon A. D. Ob otsenke predel'nykh vozmozhnostei vibrozashchit- nykh sistem [Evaluation of the Limiting Possibilities of Vibration Isolation Systems]. Avtomatika i telemekhanika – Automation and Telecontrol. 2009. No. 4. Pp. 149–162.

3. Mizhidon A. D., Mizhidon K. A. K postroeniyu etalonnogo zakona dviz- heniya dinamicheskikh sistem [Construction of Reference Law of Motion for Dynamical Systems]. Proc. 12th All-Rus. Conf. on Control Problems. Moscow: Trapeznikov Institute of Control Problems RAS. 2014. Pp. 193–199.

4. Mizhidon A. D., Mizhidon K. A. Zadacha uderzhaniya sistemy v fazo- vykh ogranicheniyakh pri postoyanno deistvuyushchikh vozmushcheniyakh [The Problem of Keeping System in Phase Constraints under Constantly Acting Perturbations]. Obobshchennye postanovki i resheniya zadach upravleniya. Sbornik trudov mezhdunarodnogo simpoziuma – Generalized Formulations and Solutions of Control Problems. Proc. Int. symp. 2014. Pp. 124–128.

5. Mizhidon A. D., Mizhidon K. A. Ob odnom podkhode k nakhozhdeniyu upravleniya, obespechivayushchego vypolnenie fazovykh ogranichenii v linei- noi zadache upravleniya [The Approach to Control Determination that Ensures Phase Constraints in a Linear Control Problem]. Avtomatika i telemekhanika – Automation and Telecontrol. 2015. No. 17. Pp. 3–17.

6. Mizhidon A. D., Mizhidon K. A. Zadacha optimal'nogo upravleniya li- neinoi sistemoi pri fazovykh i smeshannykh ogranicheniyakh [A Problem of Linear System Optimal Control under Phase and Mixed Constraints]. Vestnik Buryatskogo gosudarstvennogo universiteta – Bulletin of Buryat State Univer- sity. 2013. No. 9. Pp. 17–24.

7. Sukharev A. G., Timokhov A. V., Fedorov V. V. Kurs metodov optimizatsii [A Course of Optimization Methods]. Moscow: Nauka Publ., 1986. 328 p.