BSU bulletin
Mathematics, Informatics
LoginРУСENG

BSU bulletin. Mathematics, Informatics

Bibliographic description:
Aksenyushkina E. V.
SOLUTION OF THE PROBLEM OF OPTIMAL CONSUMPTION AND SAVING BASED ON THE MAXIMUM PRINCIPLE // BSU bulletin. Mathematics, Informatics. - 2018. №1. . - С. 3-18.
Title:
SOLUTION OF THE PROBLEM OF OPTIMAL CONSUMPTION AND SAVING BASED ON THE MAXIMUM PRINCIPLE
Financing:
Codes:
DOI: 10.18101/2304-5728-2018-1-3-18UDK: 517.977
Annotation:
The article deals with the problem of optimal control associated with the search for a consumption strategy in order to obtain the maximum total utility adjusted for inflation. Solution of the problem of saving optimization is carried out within the maximum principle for power and logarithmic utility functions of consumption. The problem under consideration admits an analytical solution depending on the relations between the parameters of a model. As a result, we have obtained optimal consumption programs (cash outflow) in terms of maximizing the utility functionality. The article describes the evolution of capi- tal depending on the parameters of growth and inflation. We note that for the logarithmic utility function the optimal consumption for subjects with a low monetary resource contains zero segments (periods of "starvation") at the initial or final part of the planning interval.
Keywords:
optimal control; utility function of consumption; the maximum principle; evolution of capital; optimal consumption regime.
List of references:
Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F. Matematicheskaya teoriya optimal'nykh protsessov [Mathematical Theory of Optimal Processes]. Moscow: Nauka Publ., 1983. 392 p.

Gabasov R., Kirilova F. M. Printsip maksimuma v teorii optimal'nogo upravleniya [Maximum Principle in Optimal Control Theory]. Moscow: Libro- kom Publ., 2011. 272 p.

Srochko V. A. Iteratsionnye metody resheniya zadach optimal'nogo upravleniya [Iterative Methods for Solving Optimal Control Problems]. Mos- cow: Fizmatlit Publ., 2000. 160 p.

Belen'kii V. Z. Optimizatsionnye modeli ekonomicheskoi dinamiki [Op- timization Models of Economic Dynamics]. Moscow: Nauka Publ., 2007. 259 p.

Dykhta V. A. Optimal'noe upravlenie v modelyakh ekonomiki [Optimal Control in Economic Models]. Irkutsk: Irkutsk State University Publ., 2015. 100 p.

Krasovskii A. A., Lebedev P. D., Taras'ev A. M. Zamena Bernulli v modeli Remzi: optimal'nye traektorii pri ogranicheniyakh na upravlenie [Ber- noulli Replacement in the Ramsey Model: Optimal Trajectories under Control Constraints]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki — Journal of Numerical Mathematics and Mathematical Physics. 2017. V. 57. No. 5. Pp. 768–782.

Aksenyushkina E. V. Postroenie optimal'noi investitsionnoi politiki firmy [Construction of the Company's Optimal Investment Policy]. Izvestiya Baikal'skogo gosudarstvennogo universiteta — Proceedings of Baikal State University. 2017. V. 27. No. 2. Pp. 274–280. DOI: 10.17150/2500- 2759.2017.27(2).274-280.

Antipina N. V. Vliyanie investitsionnoi sostavlyayushchei na eko- nomicheskie pokazateli malykh i srednikh firm [Influence of the Investment Component on the Economic Performance of Small and Moderate-Sized Firms]. Baikal Research Journal. 2017. V. 8. No. 2. DOI: 10.17150/2411- 6262.2017.8(2).26.

Sorokina P. G. Prognozirovanie dinamiki nalogovoi bazy po nalogu na imushchestvo organizatsii [Forecasting the Taxation Base Dynamics for Corpo- rate Property Tax]. Baikal Research Journal. 2017. V. 8, No. 2. DOI: 10.17150/2411-6262.2017.8(2).16.

Sukhodolov A. P., Kuznetsova I. A., Timofeev S. V. Analiz podkhodov v modelirovanii sredstv massovoi informatsii [Analysis of the Approaches in Modeling of Mass Media]. Voprosy teorii i praktiki zhurnalistiki — Problems of Journalism Theory and Practice. 2017. V. 6. No. 3. Pp. 287–305. DOI: 10.17150/2308-6203.2017.6(3).287-305.